644 research outputs found
The mechanism of pyridine hydrogenolysis on molybdenum-containing catalysts : IV. The conversion of piperidine
The conversion of piperidine was investigated on a CoO-MoO3-Al2O3 catalysts as a function of the temperature, reaction time, initial piperidine partial pressure and the hydrogen pressure.\ud
\ud
At 60 atm of hydrogen and conversions below 50% piperidine is selectively converted to ammonia and N-pentylpiperidine. This reaction appears to be a two-step process, ring-opening to pentylamine followed by a fast alkyl transfer from pentylamine to piperidine. The piperidine conversion is first order in piperidine as well as in hydrogen, and of -1 order in the total pressure of the nitrogen bases.\ud
At higher conversions the rate of formation of pentane and ammonia are influenced by the rate of the (hydro)cracking steps, and also by the equilibrium constants of the alkyl transfer equilibria. The rate of a (hydro)cracking reaction is lower when a ring is present in the nitrogen base. The activation energies of these reactions were 160 kJ molâ1, about 60 kJ molâ1 greater than those of alkyl transfer reactions.\ud
At 1 atm of hydrogen the product composition was completely different from that observed at higher pressures of hydrogen.\ud
The mechanism of the reactions is briefly discussed
The importance of combating malnutrition in care
Malnutrition results from a deficiency of macronutrients (energy and protein) and micronutrients (vitamins and minerals), that may impact on body composition, function and/or clinical outcomes (National Institute for Health and Care Excellence, 2006). A range of factors, including impaired food intake (seen in individuals who are anorexic or have difficulties swallowing), increased nutrient requirements (seen during infection) and/or loss of nutrients which may be present in individuals with inflammatory bowel disease, have been known to cause malnutrition (Dunne, 2009)
Ground-State Electromagnetic Moments of Calcium Isotopes
High-resolution bunched-beam collinear laser spectroscopy was used to measure
the optical hyperfine spectra of the Ca isotopes. The ground state
magnetic moments of Ca and quadrupole moments of Ca were
measured for the first time, and the Ca ground state spin was
determined in a model-independent way. Our results provide a critical test of
modern nuclear theories based on shell-model calculations using
phenomenological as well as microscopic interactions. The results for the
neutron-rich isotopes are in excellent agreement with predictions using
interactions derived from chiral effective field theory including three-nucleon
forces, while lighter isotopes illustrate the presence of particle-hole
excitations of the Ca core in their ground state.Comment: Accepted as a Rapid Communication in Physical Review
User-centered development and testing of a monitoring system that provides feedback regarding physical functioning to elderly people
Purpose: To involve elderly people during the development of a mobile interface of a monitoring system that provides feedback to them regarding changes in physical functioning and to test the system in a pilot study.
Methods and participants: The iterative user-centered development process consisted of the following phases: (1) selection of user representatives; (2) analysis of users and their context; (3) identification of user requirements; (4) development of the interface; and (5) evaluation of the interface in the lab. Subsequently, the monitoring and feedback system was tested in a pilot study by five patients who were recruited via a geriatric outpatient clinic. Participants used a bathroom scale to monitor weight and balance, and a mobile phone to monitor physical activity on a daily basis for six weeks. Personalized feedback was provided via the interface of the mobile phone. Usability was evaluated on a scale from 1 to 7 using a modified version of the Post-Study System Usability Questionnaire (PSSUQ); higher scores indicated better usability. Interviews were conducted to gain insight into the experiences of the participants with the system.
Results: The developed interface uses colors, emoticons, and written and/or spoken text messages to provide daily feedback regarding (changes in) weight, balance, and physical activity. The participants rated the usability of the monitoring and feedback system with a mean score of 5.2 (standard deviation 0.90) on the modified PSSUQ. The interviews revealed that most participants liked using the system and appreciated that it signaled changes in their physical functioning. However, usability was negatively influenced by a few technical errors.
Conclusion: Involvement of elderly users during the development process resulted in an interface with good usability. However, the technical functioning of the monitoring system needs to be optimized before it can be used to support elderly people in their self-management
Magnetic moments of Mg in time-odd relativistic mean field approach
The configuration-fixed deformation constrained relativistic mean field
approach with time-odd component has been applied to investigate the
ground-state properties of Mg with effective interaction PK1. The ground
state of Mg has been found to be prolate deformed, , with
the odd neutron in orbital and the energy -251.85 MeV which is close
to the data -252.06 MeV. The magnetic moment is
obtained with the effective electromagnetic current which well reproduces the
data self-consistently without introducing any
parameter. The energy splittings of time reversal conjugate states, the neutron
current, the energy contribution from the nuclear magnetic potential, and the
effect of core polarization are discussed in detail.Comment: 13 pages, 4 figure
Isomer shift and magnetic moment of the long-lived 1/2 isomer in Zn: signature of shape coexistence near Ni
Collinear laser spectroscopy has been performed on the Zn
isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred
milliseconds half-life was confirmed, and the nuclear spins and moments of the
ground and isomeric states in Zn as well as the isomer shift were
measured. From the observed hyperfine structures, spins and
are firmly assigned to the ground and isomeric states. The magnetic moment
(Zn) = 1.1866(10) , confirms the spin-parity
with a shell-model configuration, in excellent
agreement with the prediction from large scale shell-model theories. The
magnetic moment (Zn) = 1.0180(12) supports a
positive parity for the isomer, with a wave function dominated by a 2h-1p
neutron excitation across the shell gap. The large isomer shift
reveals an increase of the intruder isomer mean square charge radius with
respect to that of the ground state:
= +0.204(6) fm, providing first evidence of shape coexistence.Comment: 5 pages, 4 figures, 1 table, Accepeted by Phys. Rev. Lett. (2016
Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects
Measurements of the ground-state nuclear spins, magnetic and quadrupole
moments of the copper isotopes from 61Cu up to 75Cu are reported. The
experiments were performed at the ISOLDE facility, using the technique of
collinear laser spectroscopy. The trend in the magnetic moments between the
N=28 and N=50 shell closures is reasonably reproduced by large-scale
shell-model calculations starting from a 56Ni core. The quadrupole moments
reveal a strong polarization of the underlying Ni core when the neutron shell
is opened, which is however strongly reduced at N=40 due to the parity change
between the and orbits. No enhanced core polarization is seen beyond
N=40. Deviations between measured and calculated moments are attributed to the
softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.Comment: 13 pagers, 19 figures, accepted by Physical Review
Decay-assisted collinear resonance ionization spectroscopy: Application to neutron-deficient francium
This paper reports on the hyperfine-structure and radioactive-decay studies
of the neutron-deficient francium isotopes Fr performed with the
Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE
facility, CERN. The high resolution innate to collinear laser spectroscopy is
combined with the high efficiency of ion detection to provide a
highly-sensitive technique to probe the hyperfine structure of exotic isotopes.
The technique of decay-assisted laser spectroscopy is presented, whereby the
isomeric ion beam is deflected to a decay spectroscopy station for alpha-decay
tagging of the hyperfine components. Here, we present the first
hyperfine-structure measurements of the neutron-deficient francium isotopes
Fr, in addition to the identification of the low-lying states of
Fr performed at the CRIS experiment.Comment: Accepted for publication with Physical Review
Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry
The magnetic dipole moments and changes in mean-square charge radii of the
neutron-rich isotopes were measured with the
newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at
ISOLDE, CERN, probing the to atomic
transition. The values for
and follow the observed increasing
slope of the charge radii beyond . The charge radii odd-even
staggering in this neutron-rich region is discussed, showing that
has a weakly inverted odd-even staggering while
has normal staggering. This suggests that both isotopes
reside at the borders of a region of inverted staggering, which has been
associated with reflection-asymmetric shapes. The value supports a shell model configuration for the
ground state. The values support the tentative
spin, and point to a intruder ground state configuration.Comment: Accepted for publication with Physical Review
- âŠ