17 research outputs found
Commensal viruses of mosquitoes: Host restriction, transmission, and interaction with arboviral pathogens
Recent advances in virus detection strategies and deep sequencing technologies have enabled the identification of a multitude of new viruses that persistently infect mosquitoes but do not infect vertebrates. These are usually referred to as insect-specific viruses (ISVs). These novel viruses have generated considerable interest in their modes of transmission, persistence in mosquito populations, the mechanisms that restrict their host range to mosquitoes, and their interactions with pathogens transmissible by the same mosquito. In this article, we discuss studies in our laboratory and others that demonstrate that many ISVs are efficiently transmitted directly from the female mosquito to their progeny via infected eggs, and, moreover, that persistent infection of mosquito cell cultures or whole mosquitoes with ISVs can restrict subsequent infection, replication, and transmission of some mosquito-borne viral pathogens. This suggests that some ISVs may act as natural regulators of arboviral transmission. We also discuss viral and host factors that may be responsible for their host restriction
The taxonomy of an Australian nodavirus isolated from mosquitoes
We describe a virus isolated from Culex annulirostris mosquitoes in Australia. Phylogenetic analysis of its RNA-dependent RNA polymerase sequence and that of other related viruses revealed 6 clades, two of which corresponded wholly or partly with existing genera in the family Nodaviridae. There was greater genetic diversity within the family than previously recognized prompting us to suggest that additional genera should be considered within the family
Chimeric viruses of the insect-specific flavivirus Palm Creek with structural proteins of vertebrate-infecting flaviviruses identify barriers to replication of insect-specific flaviviruses in vertebrate cells
Here we report the generation of novel chimeric flaviviruses, which express the prM and E proteins of either dengue or Zika viruses on the genomic backbone of Palm Creek virus (PCV), an insect-specific flavivirus. The chimeric virus particles were antigenically indistinguishable from their parental prM-E donors, but were unable to infect vertebrate cells. An additional chimera (PCV structural genes in the backbone of West Nile virus - WNV/PCV-prME) was also unable to infect vertebrate cells, but transfection with RNA from this virus resulted in detectable RNA replication and translation but no infectious virion production. These data suggest multiple blocks at the entry, RNA replication and assembly/release stages of insect-specific flavivirus (ISF) infection in vertebrate cells. Serial passaging of these chimeric viruses in mosquito cells identified amino acid substitutions that may lead to increased replication efficiency. These chimeric viruses provide unique tools to further dissect the mechanisms of the host restriction of ISFs
Infectious DNAs derived from insect-specific flavivirus genomes enable identification of pre- and post-entry host restrictions in vertebrate cells
Flaviviruses such as West Nile virus (WNV), dengue virus and Zika virus are mosquito-borne pathogens that cause significant human diseases. A novel group of insect-specific flaviviruses (ISFs), which only replicate in mosquitoes, have also been identified. However, little is known about the mechanisms of ISF host restriction. We report the generation of infectious cDNA from two Australian ISFs, Parramatta River virus (PaRV) and Palm Creek virus (PCV). Using circular polymerase extension cloning (CPEC) with a modified OpIE2 insect promoter, infectious cDNA was generated and transfected directly into mosquito cells to produce infectious virus indistinguishable from wild-type virus. When infectious PaRV cDNA under transcriptional control of a mammalian promoter was used to transfect mouse embryo fibroblasts, the virus failed to initiate replication even when cell entry steps were by-passed and the type I interferon response was lacking. We also used CPEC to generate viable chimeric viruses between PCV and WNV. Analysis of these hybrid viruses revealed that ISFs are also restricted from replication in vertebrate cells at the point of entry. The approaches described here to generate infectious ISF DNAs and chimeric viruses provide unique tools to further dissect the mechanisms of their host restriction
Author Correction: Infectious DNAs derived from insect-specific flavivirus genomes enable identification of pre- and post-entry host restrictions in vertebrate cells
A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper
Protective efficacy of a chimeric insect-specific flavivirus vaccine against West Nile virus
Virulent strains of West Nile virus (WNV) are highly neuro-invasive and human infection is potentially lethal. However, no vaccine is currently available for human use. Here, we report the immunogenicity and protective efficacy of a vaccine derived from a chimeric virus, which was constructed using the structural proteins (prM and E) of the Kunjin strain of WNV (WNV) and the genome backbone of the insect-specific flavivirus Binjari virus (BinJV). This chimeric virus (BinJ/WNV-prME) exhibits an insect-specific phenotype and does not replicate in vertebrate cells. Importantly, it authentically presents the prM-E proteins of WNV, which is antigenically very similar to other WNV strains and lineages. Therefore BinJ/WNV-prME represents an excellent candidate to assess as a vaccine against virulent WNV strains, including the highly pathogenic WNV. When CD1 mice were immunized with purified BinJ/WNV-prME, they developed robust neutralizing antibody responses after a single unadjuvanted dose of 1 to 5 μg. We further demonstrated complete protection against viremia and mortality after lethal challenge with WNV, with no clinical or subclinical pathology observed in vaccinated animals. These data suggest that BinJ/WNV-prME represents a safe and effective WNV vaccine candidate that warrants further investigation for use in humans or in veterinary applications
Novel monoclonal antibodies against Australian strains of negeviruses and insights into virus structure, replication and host -restriction
We report the isolation of Australian strains of Bustos virus and Ngewotan virus, two insect-specific viruses in the newly identified taxon , originally isolated from Southeast Asian mosquitoes. Consistent with the expected insect-specific tropism of negeviruses, these isolates of Ngewotan and Bustos viruses, alongside the Australian negevirus Castlerea virus, replicated exclusively in mosquito cells but not in vertebrate cells, even when their temperature was reduced to 34 °C. Our data confirmed the existence of two structural proteins, putatively one membrane protein forming the majority of the virus particle, and one glycoprotein forming a projection on the apex of the virions. We generated and characterized 71 monoclonal antibodies to both structural proteins of the two viruses, most of which were neutralizing. Overall, these data increase our knowledge of negevirus mechanisms of infection and replication
Discovery and characterisation of castlerea virus, a new species of Negevirus isolated in Australia
With advances in sequencing technologies, there has been an increase in the discovery of viruses that do not group with any currently described virus families. The newly described taxon encompasses a group of viruses displaying an insect-specific phenotype which have been isolated from multiple host species on numerous continents. Using a broad-spectrum virus screening assay based on the detection of double-stranded RNA and next-generation sequencing, we have detected a novel species of negevirus, from , and mosquitoes collected in 4 geographically separate regions of Australia. Bioinformatic analysis of the virus, tentatively named Castlerea virus, revealed that it is genetically distinct from previously described negeviruses but clusters in the newly proposed clade within this taxon. Analysis of virions confirmed the presence of 2 proteins of 24 and 40 kDa which support previous bioinformatic predictions of negevirus structural proteins
The recently identified flavivirus Bamaga virus is transmitted horizontally by Culex mosquitoes and interferes with West Nile virus replication in vitro and transmission in vivo
Arthropod-borne flaviviruses such as yellow fever (YFV), Zika and dengue viruses continue to cause significant human disease globally. These viruses are transmitted by mosquitoes when a female imbibes an infected blood-meal from a viremic vertebrate host and expectorates the virus into a subsequent host. Bamaga virus (BgV) is a flavivirus recently discovered in Culex sitiens subgroup mosquitoes collected from Cape York Peninsula, Australia. This virus phylogenetically clusters with the YFV group, but is potentially restricted in most vertebrates. However, high levels of replication in an opossum cell line (OK) indicate a potential association with marsupials. To ascertain whether BgV could be horizontally transmitted by mosquitoes, the vector competence of two members of the Cx. sitiens subgroup, Cx. annulirostris and Cx. sitiens, for BgV was investigated. Eleven to thirteen days after imbibing an infectious blood-meal, infection rates were 11.3% and 18.8% for Cx. annulirostris and Cx. sitiens, respectively. Cx. annulirostris transmitted the virus at low levels (5.6% had BgV-positive saliva overall); Cx. sitiens did not transmit the virus. When mosquitoes were injected intrathoracially with BgV, the infection and transmission rates were 100% and 82%, respectively, for both species. These results provided evidence for the first time that BgV can be transmitted horizontally by Cx. annulirostris, the primary vector of pathogenic zoonotic flaviviruses in Australia. We also assessed whether BgV could interfere with replication in vitro, and infection and transmission in vivo of super-infecting pathogenic Culex-associated flaviviruses. BgV significantly reduced growth of Murray Valley encephalitis and West Nile (WNV) viruses in vitro. While prior infection with BgV by injection did not inhibit WNV super-infection of Cx. annulirostris, significantly fewer BgV-infected mosquitoes could transmit WNV than mock-injected mosquitoes. Overall, these data contribute to our understanding of flavivirus ecology, modes of transmission by Australian mosquitoes and mechanisms for super-infection interference