15 research outputs found

    Engineering education and the development of expertise

    No full text
    BACKGROUND: Although engineering education has evolved in ways that improve the readiness of graduates to meet the challenges of the twenty-first century, national and international organizations continue to call for change. Future changes in engineering education should be guided by research on expertise and the learning processes that support its development. PURPOSE: The goals of this paper are: to relate key findings from studies of the development of expertise to engineering education, to summarize instructional practices that are consistent with these findings, to provide examples of learning experiences that are consistent with these instructional practices, and finally, to identify challenges to implementing such learning experiences in engineering programs. SCOPE/METHOD: The research synthesized for this article includes that on the development of expertise, students’ approaches to learning, students’ responses to instructional practices, and the role of motivation in learning. In addition, literature on the dominant teaching and learning practices in engineering education isused to frame some of the challenges to implementing alternative approaches to learning. CONCLUSION: Current understanding of expertise, and the learning processes that develop it, indicates that engineering education should encompass a set of learning experiences that allow students to construct deep conceptual knowledge, to develop the ability to apply key technical and professional skills fluently, and to engage in anumber of authentic engineering projects. Engineering curricula and teaching methods are often not well aligned with these goals. Curriculum-level instructional design processes should be used to design and implement changes that will improve alignment

    Bioengineering and Bioinformatics Summer Institutes: Meeting Modern Challenges in Undergraduate Summer Research

    No full text
    Summer undergraduate research programs in science and engineering facilitate research progress for faculty and provide a close-ended research experience for students, which can prepare them for careers in industry, medicine, and academia. However, ensuring these outcomes is a challenge when the students arrive ill-prepared for substantive research or if projects are ill-defined or impractical for a typical 10-wk summer. We describe how the new Bioengineering and Bioinformatics Summer Institutes (BBSI), developed in response to a call for proposals by the National Institutes of Health (NIH) and the National Science Foundation (NSF), provide an impetus for the enhancement of traditional undergraduate research experiences with intense didactic training in particular skills and technologies. Such didactic components provide highly focused and qualified students for summer research with the goal of ensuring increased student satisfaction with research and mentor satisfaction with student productivity. As an example, we focus on our experiences with the Penn State Biomaterials and Bionanotechnology Summer Institute (PSU-BBSI), which trains undergraduates in core technologies in surface characterization, computational modeling, cell biology, and fabrication to prepare them for student-centered research projects in the role of materials in guiding cell biology
    corecore