30 research outputs found

    Review of Available Methods for Evaluation of Soil Sensitivity for Seismic Design

    Get PDF
    Sensitivity describes the effect of soil disturbance/remoulding on shear strength. Cyclic stresses during seismic events may lead to varying levels of disturbance and remoulding of brittle sensitive clays. The Canadian Foundation Engineering Manual (CFEM) recommends site-specific evaluation of the seismic hazard, including site response analysis, for sites that have quick or highly sensitive clays. Different levels of soil sensitivity have been shown in different versions of CFEM and their errata. The current manual CFEM (2006) classifies clay as highly sensitive if its sensitivity is greater than 40 (classified as Class F soil). However, there is considerable variation within the literature with respect to descriptions of sensitivity and more importantly, the related seismic risks that different soil states represent. This can have a significant impact on determination of the appropriate seismic forces on supported structures according to the seismic provisions of the current National Building Code of Canada, NBCC (2005). This paper reviews the different methods used to evaluate soil sensitivity and the sensitivity classifications in the literature. Based on this review, suggestions are provided for improvements of this approach to seismic design

    The motion of trees in the wind : a data synthesis

    Get PDF
    Interactions between wind and trees control energy exchanges between the atmosphere and forest canopies. This energy exchange can lead to the widespread damage of trees, and wind is a key disturbance agent in many of the world’s forests. However, most research on this topic has focused on conifer plantations, where risk management is economically important, rather than broadleaf forests, which dominate the forest carbon cycle. This study brings together tree motion time-series data to systematically evaluate the factors influencing tree responses to wind loading, including data from both broadleaf and coniferous trees in forests and open environments. Wefoundthatthetwomostdescriptive features of tree motion were (a) the fundamental frequency, which is a measure of the speed at which a tree sways and is strongly related to tree height, and (b) the slope of the power spectrum, which is related to the efficiency of energy transfer from wind to trees. Intriguingly, the slope of the power spectrum was found to remain constant from medium to high wind speeds for all trees in this study. This suggests that, contrary to some predictions, damping or amplification mechanisms do not change dramatically at high wind speeds, and therefore wind damage risk is related, relatively simply, to wind speed. Conifers from forests were distinct from broadleaves in terms of their response to wind loading. Specifically, the fundamental frequency of forest conifers was related to their size according to the cantilever beam model (i.e. vertically distributed mass), whereas broadleaves were better approximated by the simple pendulum model (i.e. dominated by the crown). Forest conifers also had a steeper slope of the power spectrum. We interpret these finding as being strongly related to tree architecture; i.e. conifers generally have a simple shape due to their apical dominance, whereas broadleaves exhibit a much wider range of architectures with more dominant crowns

    Undrained capacity of circular shallow foundations on two-layer clays under combined VHMT loading

    Get PDF
    Wind turbines are typically designed based on fatigue and serviceability limit states, but still require an accurate assessment of bearing capacity. Overconsolidated clay deposits in Canada often have a thin layer of crust with a relatively high undrained shear strength developed from weathering, desiccation, and geo-chemical processes. However, existing design methods only assess the bearing capacity using effective area and inclination factor without consideration of surficial crusts. This paper studies the undrained VHMT (vertical, horizontal, moment and torsional) failure envelope of circular foundations founded on a surficial crust underlain by a uniform soil with a zero-tension interface condition using finite element analysis. An analytical expression for the VHMT failure envelope is derived.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Design issues in work-related serious injuries

    No full text
    Canberra, AC

    Effect of Fiber and Cement Additives on the Small-Strain Stiffness Behavior of Toyoura Sand

    No full text
    The disposal of 2011 Japan earthquake waste has become an important issue in Japan and it is not realistic or economical to send all of these wastes to landfill sites, due to limited space, high costs, and related environmental issues. In sustainable geotechnical applications, mixing of the separated soils from disaster wastes with additives (e.g., cement and fiber) is required to improve their strength and stiffness characteristics. In this study, monotonic triaxial drained compression tests are performed on medium dense specimens of Toyoura sand-cement-fiber mixtures with different percentages of fiber and cement (e.g., 0–3%) additives. The experimental results indicate that behavior of the mixtures is significantly affected by the concentration of fiber and cement additives. Based on a comprehensive set of test results, modifications to the series of equations were developed that can be used to evaluate the shear modulus and mobilized stress curves at small-strain levels. The experimental results and model comparison show that the elastic threshold strain (γe), reference strain (γr), increases with fiber and cement additives. In addition, the range of curvature parameter, from 0.88 to 1.0, provides a good comparison with the results of small-strain measurements. Overall, the comparison of the results and model shows that the small-strain measurements obtained using local strain transducers fall within the range of model upper and lower bound curves. The results of the unreinforced, fiber, and cemented sand shows a close agreement with the model mean curve, but fiber-reinforced cemented sand shows a good comparison with model upper bound
    corecore