3 research outputs found

    A probabilistic geologic model of the Krafla geothermal system constrained by gravimetric data

    Get PDF
    Publisher's version (útgefin grein).The quantitative connections between subsurface geologic structure and measured geophysical data allow 3D geologic models to be tested against measurements and geophysical anomalies to be interpreted in terms of geologic structure. Using a Bayesian framework, geophysical inversions are constrained by prior information in the form of a reference geologic model and probability density functions (pdfs) describing petrophysical properties of the different lithologic units. However, it is challenging to select the probabilistic weights and the structure of the prior model in such a way that the inversion process retains relevant geologic insights from the prior while also exploring the full range of plausible subsurface models. In this study, we investigate how the uncertainty of the prior (expressed using probabilistic constraints on commonality and shape) controls the inferred lithologic and mass density structure obtained by probabilistic inversion of gravimetric data measured at the Krafla geothermal system. We combine a reference prior geologic model with statistics for rock properties (grain density and porosity) in a Bayesian inference framework implemented in the GeoModeller software package. Posterior probability distributions for the inferred lithologic structure, mass density distribution, and uncertainty quantification metrics depend on the assumed geologic constraints and measurement error. As the uncertainty of the reference prior geologic model increases, the posterior lithologic structure deviates from the reference prior model in areas where it may be most likely to be inconsistent with the observed gravity data and may need to be revised. In Krafla, the strength of the gravity field reflects variations in the thickness of hyaloclastite and the depth to high-density basement intrusions. Moreover, the posterior results suggest that a WNW–ESE-oriented gravity low that transects the caldera may be associated with a zone of low hyaloclastite density. This study underscores the importance of reliable prior constraints on lithologic structure and rock properties during Bayesian geophysical inversion.Icelandic Centre for Research. This study was funded by Technical Development Fund of the Research Center of Iceland (RANNÍS—Grant Number 175193-0612 Data Fusion for Geothermal Reservoir Characterization).Peer Reviewe

    The dynamic evolution of the Lahendong geothermal system in North-Sulawesi, Indonesia

    Full text link
    This study uses an integrated approach to characterize the dynamic evolution of the power-producing highenthalpy geothermal system of Lahendong, North-Sulawesi, Indonesia. Lahendong has two primary reservoirs, the southern and the northern, which have been utilised for electricity production for more than twenty years. The main focus of this study is the characterisation of heat and mass flows in the system with respect to geological structures and permeability distribution. Also, it delineates how the geothermal system has evolved and the spatial variation of the response resulting from prolonged utilization of the reservoirs. This research implemented geological structure analysis on recent surface fault mapping and pre-existing fault studies from literature. Further, the study analysed well data comprising well pressure, enthalpy, drilling program reviews and tracer tests. Hydrochemical investigation compiled new and old surface and subsurface hydrochemical evolution in both the temporal and spatial domain. The results confirm several fault trends in the study area: NESW and NW-SE are the major striking directions, while E-W and N-S are less dominant. The most apparent trends are NE-SW striking strike-slip faults, NW-SE thrust faults and N-S and E-W striking normal faults. The faults compartmentalize the reservoir. A comparison of the southern and the northern reservoir shows that the southern one is more controlled by faults; both reservoirs rely on fractures as permeability provider and are controlled by shallow hydrogeology, as derived from the integrated analysis of transient well data. Geochemical analysis shows that the reservoir fluids have generally a higher eelectrical conductivity and are closer to fluidrock equilibrium, probably due to boiling, compared to spring waters. Spring waters have generally become more acidic, which is an expected result of reservoir boiling and increased steam input to near-surface waters. The spatial distribution of changes shows a permeability evolution over time and also the role of structural permeability in response to changing reservoir conditions. Observing and recording reservoir data is highly important to understand the reservoir response to production and ensure the long-term sustainability of the system. Additionally, the data is critical for making a major difference in the reservoir management strategy.ISSN:0375-650
    corecore