33,158 research outputs found

    The Real Meaning of Complex Minkowski-Space World-Lines

    Full text link
    In connection with the study of shear-free null geodesics in Minkowski space, we investigate the real geometric effects in real Minkowski space that are induced by and associated with complex world-lines in complex Minkowski space. It was already known, in a formal manner, that complex analytic curves in complex Minkowski space induce shear-free null geodesic congruences. Here we look at the direct geometric connections of the complex line and the real structures. Among other items, we show, in particular, how a complex world-line projects into the real Minkowski space in the form of a real shear-free null geodesic congruence.Comment: 16 page

    Speciational view of macroevolution: are micro and macroevolution decoupled?

    Full text link
    We introduce a simple computational model that, with a microscopic dynamics driven by natural selection and mutation alone, allows the description of true speciation events. A statistical analysis of the so generated evolutionary tree captures realistic features showing power laws for frequency distributions in time and size. Albeit these successful predictions, the difficulty in obtaining punctuated dynamics with mass extinctions suggests the necessity of decoupling micro and macro-evolutionary mechanisms in agreement with some ideas of Gould's and Eldredge's theory of punctuated equilibrium.Comment: Europhys. Lett. 75:342--34

    An explanation of the Newman-Janis Algorithm

    Full text link
    After the original discovery of the Kerr metric, Newman and Janis showed that this solution could be ``derived'' by making an elementary complex transformation to the Schwarzschild solution. The same method was then used to obtain a new stationary axisymmetric solution to Einstein's field equations now known as the Kerr-newman metric, representing a rotating massive charged black hole. However no clear reason has ever been given as to why the Newman-Janis algorithm works, many physicist considering it to be an ad hoc procedure or ``fluke'' and not worthy of further investigation. Contrary to this belief this paper shows why the Newman-Janis algorithm is successful in obtaining the Kerr-Newman metric by removing some of the ambiguities present in the original derivation. Finally we show that the only perfect fluid generated by the Newman-Janis algorithm is the (vacuum) Kerr metric and that the only Petrov typed D solution to the Einstein-Maxwell equations is the Kerr-Newman metric.Comment: 14 pages, no figures, submitted to Class. Quantum Gra

    Fitness-dependent topological properties of the World Trade Web

    Full text link
    Among the proposed network models, the hidden variable (or good get richer) one is particularly interesting, even if an explicit empirical test of its hypotheses has not yet been performed on a real network. Here we provide the first empirical test of this mechanism on the world trade web, the network defined by the trade relationships between world countries. We find that the power-law distributed gross domestic product can be successfully identified with the hidden variable (or fitness) determining the topology of the world trade web: all previously studied properties up to third-order correlation structure (degree distribution, degree correlations and hierarchy) are found to be in excellent agreement with the predictions of the model. The choice of the connection probability is such that all realizations of the network with the same degree sequence are equiprobable.Comment: 4 Pages, 4 Figures. Final version accepted for publication on Physical Review Letter

    Behaviour of spin-1/2 particle around a charged black hole

    Full text link
    Dirac equation is separable in curved space-time and its solution was found for both spherically and axially symmetric geometry. But most of the works were done without considering the charge of the black hole. Here we consider the spherically symmetric charged black hole background namely Reissner-Nordstrom black hole. Due to presence of the charge of black-hole charge-charge interaction will be important for the cases of incoming charged particle (e.g. electron, proton etc.). Therefore both gravitational and electromagnetic gauge fields should be introduced. Naturally behaviour of the particle will be changed from that in Schwarzschild geometry. We compare both the solutions. In the case of Reissner-Nordstrom black hole there is a possibility of super-radiance unlike Schwarzschild case. We also check this branch of the solution.Comment: 8 Latex pages and 4 Figures; RevTex.style; Accepted for Publication in Classical and Quantum Gravit

    Mean-field solution of the small-world network model

    Full text link
    The small-world network model is a simple model of the structure of social networks, which simultaneously possesses characteristics of both regular lattices and random graphs. The model consists of a one-dimensional lattice with a low density of shortcuts added between randomly selected pairs of points. These shortcuts greatly reduce the typical path length between any two points on the lattice. We present a mean-field solution for the average path length and for the distribution of path lengths in the model. This solution is exact in the limit of large system size and either large or small number of shortcuts.Comment: 14 pages, 2 postscript figure

    Clustering and preferential attachment in growing networks

    Get PDF
    We study empirically the time evolution of scientific collaboration networks in physics and biology. In these networks, two scientists are considered connected if they have coauthored one or more papers together. We show that the probability of scientists collaborating increases with the number of other collaborators they have in common, and that the probability of a particular scientist acquiring new collaborators increases with the number of his or her past collaborators. These results provide experimental evidence in favor of previously conjectured mechanisms for clustering and power-law degree distributions in networks.Comment: 13 pages, 2 figure

    Characterizing the structure of small-world networks

    Full text link
    We give exact relations which are valid for small-world networks (SWN's) with a general `degree distribution', i.e the distribution of nearest-neighbor connections. For the original SWN model, we illustrate how these exact relations can be used to obtain approximations for the corresponding basic probability distribution. In the limit of large system sizes and small disorder, we use numerical studies to obtain a functional fit for this distribution. Finally, we obtain the scaling properties for the mean-square displacement of a random walker, which are determined by the scaling behavior of the underlying SWN

    Identity and Search in Social Networks

    Full text link
    Social networks have the surprising property of being "searchable": Ordinary people are capable of directing messages through their network of acquaintances to reach a specific but distant target person in only a few steps. We present a model that offers an explanation of social network searchability in terms of recognizable personal identities: sets of characteristics measured along a number of social dimensions. Our model defines a class of searchable networks and a method for searching them that may be applicable to many network search problems, including the location of data files in peer-to-peer networks, pages on the World Wide Web, and information in distributed databases.Comment: 4 page, 3 figures, revte
    corecore