47,502 research outputs found
Fast modal extraction in NASTRAN via the FEER computer program
A new eigensolution routine, FEER (Fast Eigensolution Extraction Routine), used in conjunction with NASTRAN at Israel Aircraft Industries is described. The FEER program is based on an automatic matrix reduction scheme whereby the lower modes of structures with many degrees of freedom can be accurately extracted from a tridiagonal eigenvalue problem whose size is of the same order of magnitude as the number of required modes. The process is effected without arbitrary lumping of masses at selected node points or selection of nodes to be retained in the analysis set. The results of computational efficiency studies are presented, showing major arithmetic operation counts and actual computer run times of FEER as compared to other methods of eigenvalue extraction, including those available in the NASTRAN READ module. It is concluded that the tridiagonal reduction method used in FEER would serve as a valuable addition to NASTRAN for highly increased efficiency in obtaining structural vibration modes
Stations, trains and small-world networks
The clustering coefficient, path length and average vertex degree of two
urban train line networks have been calculated. The results are compared with
theoretical predictions for appropriate random bipartite graphs. They have also
been compared with one another to investigate the effect of architecture on the
small-world properties.Comment: 6 pages, prepared in RevTe
Interfaces (and Regional Congruence?) in Spin Glasses
We present a general theorem restricting properties of interfaces between
thermodynamic states and apply it to the spin glass excitations observed
numerically by Krzakala-Martin and Palassini-Young in spatial dimensions d=3
and 4. We show that such excitations, with interface dimension smaller than d,
cannot yield regionally congruent thermodynamic states. More generally, zero
density interfaces of translation-covariant excitations cannot be pinned (by
the disorder) in any d but rather must deflect to infinity in the thermodynamic
limit. Additional consequences concerning regional congruence in spin glasses
and other systems are discussed.Comment: 4 pages (ReVTeX); 1 figure; submitted to Physical Review Letter
Placing three-dimensional isoparametric elements into NASTRAN
Linear (8 node), parabolic (20 node), cubic (32 node) and mixed (some edges linear, some parabolic and some cubic) have been inserted into NASTRAN, level 15.1. First the dummy element feature was used to check out the stiffness matrix generation routines for the linear element in NASTRAN. Then, the necessary modules of NASTRAN were modified to include the new family of elements. The matrix assembly was changed so that the stiffness matrix of each isoparametric element is only generated once as the time to generate these higher order elements tends to be much longer than the other elements in NASTRAN. This paper presents some of the experiences and difficulties of inserting a new element or family of elements into NASTRAN
Large-scale structure of time evolving citation networks
In this paper we examine a number of methods for probing and understanding
the large-scale structure of networks that evolve over time. We focus in
particular on citation networks, networks of references between documents such
as papers, patents, or court cases. We describe three different methods of
analysis, one based on an expectation-maximization algorithm, one based on
modularity optimization, and one based on eigenvector centrality. Using the
network of citations between opinions of the United States Supreme Court as an
example, we demonstrate how each of these methods can reveal significant
structural divisions in the network, and how, ultimately, the combination of
all three can help us develop a coherent overall picture of the network's
shape.Comment: 10 pages, 6 figures; journal names for 4 references fixe
Realistic spin glasses below eight dimensions: a highly disordered view
By connecting realistic spin glass models at low temperature to the highly
disordered model at zero temperature, we argue that ordinary Edwards-Anderson
spin glasses below eight dimensions have at most a single pair of physically
relevant pure states at nonzero low temperature. Less likely scenarios that
evade this conclusion are also discussed.Comment: 18 pages (RevTeX; 1 figure; to appear in Physical Review E
Community structure in directed networks
We consider the problem of finding communities or modules in directed
networks. The most common approach to this problem in the previous literature
has been simply to ignore edge direction and apply methods developed for
community discovery in undirected networks, but this approach discards
potentially useful information contained in the edge directions. Here we show
how the widely used benefit function known as modularity can be generalized in
a principled fashion to incorporate the information contained in edge
directions. This in turn allows us to find communities by maximizing the
modularity over possible divisions of a network, which we do using an algorithm
based on the eigenvectors of the corresponding modularity matrix. This method
is shown to give demonstrably better results than previous methods on a variety
of test networks, both real and computer-generated.Comment: 5 pages, 3 figure
Degree Correlations in Random Geometric Graphs
Spatially embedded networks are important in several disciplines. The
prototypical spatial net- work we assume is the Random Geometric Graph of which
many properties are known. Here we present new results for the two-point degree
correlation function in terms of the clustering coefficient of the graphs for
two-dimensional space in particular, with extensions to arbitrary finite
dimension
- …