975 research outputs found
Properties of highly clustered networks
We propose and solve exactly a model of a network that has both a tunable
degree distribution and a tunable clustering coefficient. Among other things,
our results indicate that increased clustering leads to a decrease in the size
of the giant component of the network. We also study SIR-type epidemic
processes within the model and find that clustering decreases the size of
epidemics, but also decreases the epidemic threshold, making it easier for
diseases to spread. In addition, clustering causes epidemics to saturate
sooner, meaning that they infect a near-maximal fraction of the network for
quite low transmission rates.Comment: 7 pages, 2 figures, 1 tabl
Michaelis-Menten Dynamics in Complex Heterogeneous Networks
Biological networks have been recently found to exhibit many topological
properties of the so-called complex networks. It has been reported that they
are, in general, both highly skewed and directed. In this paper, we report on
the dynamics of a Michaelis-Menten like model when the topological features of
the underlying network resemble those of real biological networks.
Specifically, instead of using a random graph topology, we deal with a complex
heterogeneous network characterized by a power-law degree distribution coupled
to a continuous dynamics for each network's component. The dynamics of the
model is very rich and stationary, periodic and chaotic states are observed
upon variation of the model's parameters. We characterize these states
numerically and report on several quantities such as the system's phase diagram
and size distributions of clusters of stationary, periodic and chaotic nodes.
The results are discussed in view of recent debate about the ubiquity of
complex networks in nature and on the basis of several biological processes
that can be well described by the dynamics studied.Comment: Paper enlarged and modified, including the title. Some problems with
the pdf were detected in the past. If they persist, please ask for the pdf by
e-mailing yamir(at_no_spam)unizar.es. Version to appear in Physica
Is the Universe Inflating? Dark Energy and the Future of the Universe
We consider the fate of the observable universe in the light of the discovery
of a dark energy component to the cosmic energy budget. We extend results for a
cosmological constant to a general dark energy component and examine the
constraints on phenomena that may prevent the eternal acceleration of our patch
of the universe. We find that the period of accelerated cosmic expansion has
not lasted long enough for observations to confirm that we are undergoing
inflation; such an observation will be possible when the dark energy density
has risen to between 90% and 95% of the critical. The best we can do is make
cosmological observations in order to verify the continued presence of dark
energy to some high redshift. Having done that, the only possibility that could
spoil the conclusion that we are inflating would be the existence of a
disturbance (the surface of a true vacuum bubble, for example) that is moving
toward us with sufficiently high velocity, but is too far away to be currently
observable. Such a disturbance would have to move toward us with speed greater
than about 0.8c in order to spoil the late-time inflation of our patch of the
universe and yet avoid being detectable.Comment: 7 pages, 7 figure
Synchronisation in networks of delay-coupled type-I excitable systems
We use a generic model for type-I excitability (known as the SNIPER or SNIC
model) to describe the local dynamics of nodes within a network in the presence
of non-zero coupling delays. Utilising the method of the Master Stability
Function, we investigate the stability of the zero-lag synchronised dynamics of
the network nodes and its dependence on the two coupling parameters, namely the
coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model
for type-II excitability), there are parameter ranges where the stability of
synchronisation depends on the coupling strength and delay time. One important
implication of these results is that there exist complex networks for which the
adding of inhibitory links in a small-world fashion may not only lead to a loss
of stable synchronisation, but may also restabilise synchronisation or
introduce multiple transitions between synchronisation and desynchronisation.
To underline the scope of our results, we show using the Stuart-Landau model
that such multiple transitions do not only occur in excitable systems, but also
in oscillatory ones.Comment: 10 pages, 9 figure
Heterogeneous Delays in Neural Networks
We investigate heterogeneous coupling delays in complex networks of excitable
elements described by the FitzHugh-Nagumo model. The effects of discrete as
well as of uni- and bimodal continuous distributions are studied with a focus
on different topologies, i.e., regular, small-world, and random networks. In
the case of two discrete delay times resonance effects play a major role:
Depending on the ratio of the delay times, various characteristic spiking
scenarios, such as coherent or asynchronous spiking, arise. For continuous
delay distributions different dynamical patterns emerge depending on the width
of the distribution. For small distribution widths, we find highly synchronized
spiking, while for intermediate widths only spiking with low degree of
synchrony persists, which is associated with traveling disruptions, partial
amplitude death, or subnetwork synchronization, depending sensitively on the
network topology. If the inhomogeneity of the coupling delays becomes too
large, global amplitude death is induced
Soil nutrients and beta diversity in the Bornean Dipterocarpaceae: evidence for niche partitioning by tropical rain forest trees
1 The relative importance of niche- and dispersal-mediated processes in structuring diverse tropical plant communities remains poorly understood. Here, we link mesoscale beta diversity to soil variation throughout a lowland Bornean watershed underlain by alluvium, sedimentary and granite parent materials ( c . 340 ha, 8–200 m a.s.l.). We test the hypothesis that species turnover across the habitat gradient reflects interspecific partitioning of soil resources. 2 Floristic inventories (≥ 1 cm d.b.h.) of the Dipterocarpaceae, the dominant Bornean canopy tree family, were combined with extensive soil analyses in 30 (0.16 ha) plots. Six samples per plot were analysed for total C, N, P, K, Ca and Mg, exchangeable K, Ca and Mg, extractable P, texture, and pH. 3 Extractable P, exchangeable K, and total C, N and P varied significantly among substrates and were highest on alluvium. Thirty-one dipterocarp species ( n = 2634 individuals, five genera) were recorded. Dipterocarp density was similar across substrates, but richness and diversity were highest on nutrient-poor granite and lowest on nutrient-rich alluvium. 4 Eighteen of 22 species were positively or negatively associated with parent material. In 8 of 16 abundant species, tree distribution (≥ 10 cm d.b.h.) was more strongly non-random than juveniles (1–10 cm d.b.h.), suggesting higher juvenile mortality in unsuitable habitats. The dominant species Dipterocarpus sublamellatus (> 50% of stems) was indifferent to substrate, but nine of 11 ‘subdominant’ species (> 8 individuals ha −1 ) were substrate specialists. 5 Eighteen of 22 species were significantly associated with soil nutrients, especially P, Mg and Ca. Floristic variation was significantly correlated with edaphic and geographical distance for all stems ≥ 1 cm d.b.h. in Mantel analyses. However, juvenile variation (1–10 cm d.b.h.) was more strongly related to geographical distance than edaphic factors, while the converse held for established trees (≥ 10 cm d.b.h.), suggesting increased importance of niche processes with size class. 6 Pervasive dipterocarp associations with soil factors suggest that niche partitioning structures dipterocarp tree communities. Yet, much floristic variation unrelated to soil was correlated with geographical distance between plots, suggesting that dispersal and niche processes jointly determine mesoscale beta diversity in the Bornean Dipterocarpaceae. Journal of Ecology (2005) doi: 10.1111/j.1365-2745.2005.01077.xPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72822/1/j.1365-2745.2005.01077.x.pd
Mixing patterns in networks
We study assortative mixing in networks, the tendency for vertices in
networks to be connected to other vertices that are like (or unlike) them in
some way. We consider mixing according to discrete characteristics such as
language or race in social networks and scalar characteristics such as age. As
a special example of the latter we consider mixing according to vertex degree,
i.e., according to the number of connections vertices have to other vertices:
do gregarious people tend to associate with other gregarious people? We propose
a number of measures of assortative mixing appropriate to the various mixing
types, and apply them to a variety of real-world networks, showing that
assortative mixing is a pervasive phenomenon found in many networks. We also
propose several models of assortatively mixed networks, both analytic ones
based on generating function methods, and numerical ones based on Monte Carlo
graph generation techniques. We use these models to probe the properties of
networks as their level of assortativity is varied. In the particular case of
mixing by degree, we find strong variation with assortativity in the
connectivity of the network and in the resilience of the network to the removal
of vertices.Comment: 14 pages, 2 tables, 4 figures, some additions and corrections in this
versio
Toward understanding covid-19 recovery: national institutes of health workshop on postacute covid-19
Over the past year, the SARS-CoV-2 pandemic has swept the globe, resulting in an enormous worldwide burden of infection and mortality. However, the additional toll resulting from long-term consequences of the pandemic has yet to be tallied. Heterogeneous disease manifestations and syndromes are now recognized among some persons after their initial recovery from SARS-CoV-2 infection, representing in the broadest sense a failure to return to a baseline state of health after acute SARS-CoV-2 infection. On 3 to 4 December 2020, the National Institute of Allergy and Infectious Diseases, in collaboration with other Institutes and Centers of the National Institutes of Health, convened a virtual workshop to summarize existing knowledge on postacute COVID-19 and to identify key knowledge gaps regarding this condition
Domain Wall Spacetimes: Instability of Cosmological Event and Cauchy Horizons
The stability of cosmological event and Cauchy horizons of spacetimes
associated with plane symmetric domain walls are studied. It is found that both
horizons are not stable against perturbations of null fluids and massless
scalar fields; they are turned into curvature singularities. These
singularities are light-like and strong in the sense that both the tidal forces
and distortions acting on test particles become unbounded when theses
singularities are approached.Comment: Latex, 3 figures not included in the text but available upon reques
- …