42 research outputs found

    Cross-Talk and Information Transfer in Mammalian and Bacterial Signaling

    Get PDF
    In mammalian and bacterial cells simple phosphorylation circuits play an important role in signaling. Bacteria have hundreds of two-component signaling systems that involve phosphotransfer between a receptor and a response regulator. In mammalian cells a similar pathway is the TGF-beta pathway, where extracellular TGF-beta ligands activate cell surface receptors that phosphorylate Smad proteins, which in turn activate many genes. In TGF-beta signaling the multiplicity of ligands begs the question as to whether cells can distinguish signals coming from different ligands, but transduced through a small set of Smads. Here we use information theory with stochastic simulations of networks to address this question. We find that when signals are transduced through only one Smad, the cell cannot distinguish between different levels of the external ligands. Increasing the number of Smads from one to two significantly improves information transmission as well as the ability to discriminate between ligands. Surprisingly, both total information transmitted and the capacity to discriminate between ligands are quite insensitive to high levels of cross-talk between the two Smads. Robustness against cross-talk requires that the average amplitude of the signals are large. We find that smaller systems, as exemplified by some two-component systems in bacteria, are significantly much less robust against cross-talk. For such system sizes phosphotransfer is also less robust against cross-talk than phosphorylation. This suggests that mammalian signal transduction can tolerate a high amount of cross-talk without degrading information content. This may have played a role in the evolution of new functionalities from small mutations in signaling pathways, allowed for the development of cross-regulation and led to increased overall robustness due to redundancy in signaling pathways. On the other hand the lack of cross-regulation observed in many bacterial two-component systems may partly be due to the loss of information content due to cross-talk

    SMAD4 is a predictive marker for 5-fluorouracil-based chemotherapy in patients with colorectal cancer

    Get PDF
    The gene for the transducer of transforming growth factor-beta/bone morphogenetic protein signalling SMAD4, a potential suppressor of colorectal carcinogenesis, is located at the chromosomal region 18q21. In order to evaluate the clinical relevance of SMAD4 deletion, gene copy alterations were determined by copy dosage using real-time quantitative PCR in 202 colorectal tumour biopsies from a previous randomised study of adjuvant chemotherapy. Patients with normal SMAD4 diploidy turned out to have a three-fold higher benefit of 5-fluorouracil-based adjuvant chemotherapy with a border line significance (overall survival: 3.23, P=0.056; disease-free survival: 2.89, P=0.045). These data are consistent with the previous observation that patients whose cancer had retention of the 18q21 region had a significantly higher benefit from 5-fluorouracil-based therapy. Moreover, these results may provide a refinement at the gene level of the clinical relevance of 18q21 deletion, thereby suggesting SMAD4 as a predictive marker in colorectal cancer. This data also indicate that integrity of this component of the transforming growth factor-beta/bone morphogenetic protein signalling pathway may be a critical factor for benefit of chemotherapy in patients with colorectal cancer

    Evolution of the TGF-β Signaling Pathway and Its Potential Role in the Ctenophore, Mnemiopsis leidyi

    Get PDF
    The TGF-β signaling pathway is a metazoan-specific intercellular signaling pathway known to be important in many developmental and cellular processes in a wide variety of animals. We investigated the complexity and possible functions of this pathway in a member of one of the earliest branching metazoan phyla, the ctenophore Mnemiopsis leidyi. A search of the recently sequenced Mnemiopsis genome revealed an inventory of genes encoding ligands and the rest of the components of the TGF-β superfamily signaling pathway. The Mnemiopsis genome contains nine TGF-β ligands, two TGF-β-like family members, two BMP-like family members, and five gene products that were unable to be classified with certainty. We also identified four TGF-β receptors: three Type I and a single Type II receptor. There are five genes encoding Smad proteins (Smad2, Smad4, Smad6, and two Smad1s). While we have identified many of the other components of this pathway, including Tolloid, SMURF, and Nomo, notably absent are SARA and all of the known antagonists belonging to the Chordin, Follistatin, Noggin, and CAN families. This pathway likely evolved early in metazoan evolution as nearly all components of this pathway have yet to be identified in any non-metazoan. The complement of TGF-β signaling pathway components of ctenophores is more similar to that of the sponge, Amphimedon, than to cnidarians, Trichoplax, or bilaterians. The mRNA expression patterns of key genes revealed by in situ hybridization suggests that TGF-β signaling is not involved in ctenophore early axis specification. Four ligands are expressed during gastrulation in ectodermal micromeres along all three body axes, suggesting a role in transducing earlier maternal signals. Later expression patterns and experiments with the TGF-β inhibitor SB432542 suggest roles in pharyngeal morphogenesis and comb row organization

    OrthoList: A Compendium of C. elegans Genes with Human Orthologs

    Get PDF
    C. elegans is an important model for genetic studies relevant to human biology and disease. We sought to assess the orthology between C. elegans and human genes to understand better the relationship between their genomes and to generate a compelling list of candidates to streamline RNAi-based screens in this model.We performed a meta-analysis of results from four orthology prediction programs and generated a compendium, "OrthoList", containing 7,663 C. elegans protein-coding genes. Various assessments indicate that OrthoList has extensive coverage with low false-positive and false-negative rates. Part of this evaluation examined the conservation of components of the receptor tyrosine kinase, Notch, Wnt, TGF-ß and insulin signaling pathways, and led us to update compendia of conserved C. elegans kinases, nuclear hormone receptors, F-box proteins, and transcription factors. Comparison with two published genome-wide RNAi screens indicated that virtually all of the conserved hits would have been obtained had just the OrthoList set (∼38% of the genome) been targeted. We compiled Ortholist by InterPro domains and Gene Ontology annotation, making it easy to identify C. elegans orthologs of human disease genes for potential functional analysis.We anticipate that OrthoList will be of considerable utility to C. elegans researchers for streamlining RNAi screens, by focusing on genes with apparent human orthologs, thus reducing screening effort by ∼60%. Moreover, we find that OrthoList provides a useful basis for annotating orthology and reveals more C. elegans orthologs of human genes in various functional groups, such as transcription factors, than previously described

    Fat facets deubiquitylation of Medea/Smad4 modulates interpretation of a Dpp morphogen gradient.

    Full text link
    The ability of secreted Transforming Growth Factor beta (TGF beta) proteins to act as morphogens dictates that their influence be strictly regulated. Here, we report that maternally contributed fat facets (faf; a homolog of USP9X/FAM) is essential for proper interpretation of the zygotic Decapentaplegic (Dpp) morphogen gradient that patterns the embryonic dorsal-ventral axis. The data suggest that the loss of faf reduces the activity of Medea (a homolog of Smad4) below the minimum necessary for adequate Dpp signaling and that this is likely due to excessive ubiquitylation on a specific lysine. This study supports the hypothesis that the control of cellular responsiveness to TGF beta signals at the level of Smad4 ubiquitylation is a conserved mechanism required for proper implementation of a morphogen gradient

    FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination.

    Full text link
    The assembly of the Smad complex is critical for TGFbeta signaling, yet the mechanisms that inactivate or empower nuclear Smad complexes are less understood. By means of siRNA screen we identified FAM (USP9x), a deubiquitinase acting as essential and evolutionarily conserved component in TGFbeta and bone morphogenetic protein signaling. Smad4 is monoubiquitinated in lysine 519 in vivo, a modification that inhibits Smad4 by impeding association with phospho-Smad2. FAM reverts this negative modification, re-empowering Smad4 function. FAM opposes the activity of Ectodermin/Tif1gamma (Ecto), a nuclear factor for which we now clarify a prominent role as Smad4 monoubiquitin ligase. Our study points to Smad4 monoubiquitination and deubiquitination as a way for cells to set their TGFbeta responsiveness: loss of FAM disables Smad4-dependent responses in several model systems, with Ecto being epistatic to FAM. This defines a regulative ubiquitination step controlling Smads that is parallel to those impinging on R-Smad phosphorylation

    FAM/USP9x, a Deubiquitinating Enzyme Essential for TGF beta Signaling, Controls Smad4 Monoubiquitination

    Get PDF
    The assembly of the Smad complex is critical for TGFbeta signaling, yet the mechanisms that inactivate or empower nuclear Smad complexes are less understood. By means of siRNA screen we identified FAM (USP9x), a deubiquitinase acting as essential and evolutionarily conserved component in TGFbeta and bone morphogenetic protein signaling. Smad4 is monoubiquitinated in lysine 519 in vivo, a modification that inhibits Smad4 by impeding association with phospho-Smad2. FAM reverts this negative modification, re-empowering Smad4 function. FAM opposes the activity of Ectodermin/Tif1gamma (Ecto), a nuclear factor for which we now clarify a prominent role as Smad4 monoubiquitin ligase. Our study points to Smad4 monoubiquitination and deubiquitination as a way for cells to set their TGFbeta responsiveness: loss of FAM disables Smad4-dependent responses in several model systems, with Ecto being epistatic to FAM. This defines a regulative ubiquitination step controlling Smads that is parallel to those impinging on R-Smad phosphorylation
    corecore