6,008 research outputs found
A pattern-recognition theory of search in expert problem solving
Understanding how look-ahead search and pattern recognition interact is one of the important research questions in the study of expert problem-solving. This paper examines the implications of the template theory (Gobet & Simon, 1996a), a recent theory of expert memory, on the theory of problem solving in chess. Templates are "chunks" (Chase & Simon, 1973) that have evolved into more complex data structures and that possess slots allowing values to be encoded rapidly. Templates may facilitate search in three ways: (a) by allowing information to be stored into LTM rapidly; (b) by allowing a search in the template space in addition to a search in the move space; and (c) by compensating loss in the "mind's eye" due to interference and decay. A computer model implementing the main ideas of the theory is presented, and simulations of its search behaviour are discussed. The template theory accounts for the slight skill difference in average depth of search found in chess players, as well as for other empirical data
Material properties of the heel fat pad across strain rates
The complex structural and material behaviour of the human heel fat pad determines the transmission of plantar loading to the lower limb across a wide range of loading scenarios; from locomotion to injurious incidents. The aim of this study was to quantify the hyper-viscoelastic material properties of the human heel fat pad across strains and strain rates. An inverse finite element (FE) optimisation algorithm was developed and used, in conjunction with quasi-static and dynamic tests performed to five cadaveric heel specimens, to derive specimen-specific and mean hyper-viscoelastic material models able to predict accurately the response of the tissue at compressive loading of strain rates up to 150 s−1. The mean behaviour was expressed by the quasi-linear viscoelastic (QLV) material formulation, combining the Yeoh material model (C10=0.1MPa, C30=7MPa, K=2GPa) and Prony׳s terms (A1=0.06, A2=0.77, A3=0.02 for τ1=1ms, τ2=10ms, τ3=10s). These new data help to understand better the functional anatomy and pathophysiology of the foot and ankle, develop biomimetic materials for tissue reconstruction, design of shoe, insole, and foot and ankle orthoses, and improve the predictive ability of computational models of the foot and ankle used to simulate daily activities or predict injuries at high rate injurious incidents such as road traffic accidents and underbody blast
First measurements of the flux integral with the NIST-4 watt balance
In early 2014, construction of a new watt balance, named NIST-4, has started
at the National Institute of Standards and Technology (NIST). In a watt
balance, the gravitational force of an unknown mass is compensated by an
electromagnetic force produced by a coil in a magnet system. The
electromagnetic force depends on the current in the coil and the magnetic flux
integral. Most watt balances feature an additional calibration mode, referred
to as velocity mode, which allows one to measure the magnetic flux integral to
high precision. In this article we describe first measurements of the flux
integral in the new watt balance. We introduce measurement and data analysis
techniques to assess the quality of the measurements and the adverse effects of
vibrations on the instrument.Comment: 7 pages, 8 figures, accepted for publication in IEEE Trans. Instrum.
Meas. This Journal can be found online at
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=1
Modelling Backward Travelling Holes in Mixed Traffic Conditions Using an Agent Based Simulation
A spatial queue model in a multi-agent simulation framework is extended by introducing a more realistic behaviour, i.e. backward travelling holes. Space corresponding to a leaving vehicle is not available immediately on the upstream end of the link. Instead, the space travels backward with a constant speed. This space is named a ‘hole’. The resulting dynamics resemble Newell’s simplified kinematic wave model. Furthermore, fundamental diagrams from homogeneous and heterogeneous traffic simulations are presented. The sensitivity of the presented approach is tested with the help of flow density contours
Generalized survival in equilibrium step fluctuations
We investigate the dynamics of a generalized survival probability
defined with respect to an arbitrary reference level (rather than the
average) in equilibrium step fluctuations. The exponential decay at large time
scales of the generalized survival probability is numerically analyzed.
is shown to exhibit simple scaling behavior as a function of
system-size , sampling time , and the reference level . The
generalized survival time scale, , associated with is shown
to decay exponentially as a function of .Comment: 4 pages, 2 figure
An Interdisciplinary Undergraduate Degree Program in Electronic Commerce
This paper describes an innovative curriculum for an interdisciplinary undergraduate degree program in electronic commerce. Faculty from the disciplines of computer information systems, computer science, operations management, marketing and graphic design collaborated in devising a curriculum that focuses on the business of electronic commerce while providing a solid base of information technology skills. The program includes an integrated junior year experience that gives students business and technical skills in a team-taught environment. During the senior year, students concentrate on technology infrastructure, business processes, or market analysis and development. This paper not only presents a blueprint for an undergraduate curriculum, but also provides a model for faculty cooperation across academic disciplines
Raman solitons in transient SRS
We report the observation of Raman solitons on numerical simulations of
transient stimulated Raman scattering (TSRS) with small group velocity
dispersion. The theory proceeds with the inverse scattering transform (IST) for
initial-boundary value problems and it is shown that the explicit theoretical
solution obtained by IST for a semi-infinite medium fits strikingly well the
numerical solution for a finite medium. We understand this from the rapid
decrease of the medium dynamical variable (the potential of the scattering
theory). The spectral transform reflection coefficient can be computed directly
from the values of the input and output fields and this allows to see the
generation of the Raman solitons from the numerical solution. We confirm the
presence of these nonlinear modes in the medium dynamical variable by the use
of a discrete spectral analysis.Comment: LaTex file, to appear in Inverse Problem
Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery
Automatic multi-class object detection in remote sensing images in
unconstrained scenarios is of high interest for several applications including
traffic monitoring and disaster management. The huge variation in object scale,
orientation, category, and complex backgrounds, as well as the different camera
sensors pose great challenges for current algorithms. In this work, we propose
a new method consisting of a novel joint image cascade and feature pyramid
network with multi-size convolution kernels to extract multi-scale strong and
weak semantic features. These features are fed into rotation-based region
proposal and region of interest networks to produce object detections. Finally,
rotational non-maximum suppression is applied to remove redundant detections.
During training, we minimize joint horizontal and oriented bounding box loss
functions, as well as a novel loss that enforces oriented boxes to be
rectangular. Our method achieves 68.16% mAP on horizontal and 72.45% mAP on
oriented bounding box detection tasks on the challenging DOTA dataset,
outperforming all published methods by a large margin (+6% and +12% absolute
improvement, respectively). Furthermore, it generalizes to two other datasets,
NWPU VHR-10 and UCAS-AOD, and achieves competitive results with the baselines
even when trained on DOTA. Our method can be deployed in multi-class object
detection applications, regardless of the image and object scales and
orientations, making it a great choice for unconstrained aerial and satellite
imagery.Comment: ACCV 201
- …