6,008 research outputs found

    A pattern-recognition theory of search in expert problem solving

    Get PDF
    Understanding how look-ahead search and pattern recognition interact is one of the important research questions in the study of expert problem-solving. This paper examines the implications of the template theory (Gobet & Simon, 1996a), a recent theory of expert memory, on the theory of problem solving in chess. Templates are "chunks" (Chase & Simon, 1973) that have evolved into more complex data structures and that possess slots allowing values to be encoded rapidly. Templates may facilitate search in three ways: (a) by allowing information to be stored into LTM rapidly; (b) by allowing a search in the template space in addition to a search in the move space; and (c) by compensating loss in the "mind's eye" due to interference and decay. A computer model implementing the main ideas of the theory is presented, and simulations of its search behaviour are discussed. The template theory accounts for the slight skill difference in average depth of search found in chess players, as well as for other empirical data

    Material properties of the heel fat pad across strain rates

    Get PDF
    The complex structural and material behaviour of the human heel fat pad determines the transmission of plantar loading to the lower limb across a wide range of loading scenarios; from locomotion to injurious incidents. The aim of this study was to quantify the hyper-viscoelastic material properties of the human heel fat pad across strains and strain rates. An inverse finite element (FE) optimisation algorithm was developed and used, in conjunction with quasi-static and dynamic tests performed to five cadaveric heel specimens, to derive specimen-specific and mean hyper-viscoelastic material models able to predict accurately the response of the tissue at compressive loading of strain rates up to 150 s−1. The mean behaviour was expressed by the quasi-linear viscoelastic (QLV) material formulation, combining the Yeoh material model (C10=0.1MPa, C30=7MPa, K=2GPa) and Prony׳s terms (A1=0.06, A2=0.77, A3=0.02 for τ1=1ms, τ2=10ms, τ3=10s). These new data help to understand better the functional anatomy and pathophysiology of the foot and ankle, develop biomimetic materials for tissue reconstruction, design of shoe, insole, and foot and ankle orthoses, and improve the predictive ability of computational models of the foot and ankle used to simulate daily activities or predict injuries at high rate injurious incidents such as road traffic accidents and underbody blast

    First measurements of the flux integral with the NIST-4 watt balance

    Full text link
    In early 2014, construction of a new watt balance, named NIST-4, has started at the National Institute of Standards and Technology (NIST). In a watt balance, the gravitational force of an unknown mass is compensated by an electromagnetic force produced by a coil in a magnet system. The electromagnetic force depends on the current in the coil and the magnetic flux integral. Most watt balances feature an additional calibration mode, referred to as velocity mode, which allows one to measure the magnetic flux integral to high precision. In this article we describe first measurements of the flux integral in the new watt balance. We introduce measurement and data analysis techniques to assess the quality of the measurements and the adverse effects of vibrations on the instrument.Comment: 7 pages, 8 figures, accepted for publication in IEEE Trans. Instrum. Meas. This Journal can be found online at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=1

    Modelling Backward Travelling Holes in Mixed Traffic Conditions Using an Agent Based Simulation

    Get PDF
    A spatial queue model in a multi-agent simulation framework is extended by introducing a more realistic behaviour, i.e. backward travelling holes. Space corresponding to a leaving vehicle is not available immediately on the upstream end of the link. Instead, the space travels backward with a constant speed. This space is named a ‘hole’. The resulting dynamics resemble Newell’s simplified kinematic wave model. Furthermore, fundamental diagrams from homogeneous and heterogeneous traffic simulations are presented. The sensitivity of the presented approach is tested with the help of flow density contours

    The U.S.S. Missouri: a Biography of the Last Batteship

    Get PDF

    Generalized survival in equilibrium step fluctuations

    Full text link
    We investigate the dynamics of a generalized survival probability S(t,R)S(t,R) defined with respect to an arbitrary reference level RR (rather than the average) in equilibrium step fluctuations. The exponential decay at large time scales of the generalized survival probability is numerically analyzed. S(t,R)S(t,R) is shown to exhibit simple scaling behavior as a function of system-size LL, sampling time δt\delta t, and the reference level RR. The generalized survival time scale, τs(R)\tau_s(R), associated with S(t,R)S(t,R) is shown to decay exponentially as a function of RR.Comment: 4 pages, 2 figure

    An Interdisciplinary Undergraduate Degree Program in Electronic Commerce

    Get PDF
    This paper describes an innovative curriculum for an interdisciplinary undergraduate degree program in electronic commerce. Faculty from the disciplines of computer information systems, computer science, operations management, marketing and graphic design collaborated in devising a curriculum that focuses on the business of electronic commerce while providing a solid base of information technology skills. The program includes an integrated junior year experience that gives students business and technical skills in a team-taught environment. During the senior year, students concentrate on technology infrastructure, business processes, or market analysis and development. This paper not only presents a blueprint for an undergraduate curriculum, but also provides a model for faculty cooperation across academic disciplines

    Raman solitons in transient SRS

    Full text link
    We report the observation of Raman solitons on numerical simulations of transient stimulated Raman scattering (TSRS) with small group velocity dispersion. The theory proceeds with the inverse scattering transform (IST) for initial-boundary value problems and it is shown that the explicit theoretical solution obtained by IST for a semi-infinite medium fits strikingly well the numerical solution for a finite medium. We understand this from the rapid decrease of the medium dynamical variable (the potential of the scattering theory). The spectral transform reflection coefficient can be computed directly from the values of the input and output fields and this allows to see the generation of the Raman solitons from the numerical solution. We confirm the presence of these nonlinear modes in the medium dynamical variable by the use of a discrete spectral analysis.Comment: LaTex file, to appear in Inverse Problem

    Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery

    Get PDF
    Automatic multi-class object detection in remote sensing images in unconstrained scenarios is of high interest for several applications including traffic monitoring and disaster management. The huge variation in object scale, orientation, category, and complex backgrounds, as well as the different camera sensors pose great challenges for current algorithms. In this work, we propose a new method consisting of a novel joint image cascade and feature pyramid network with multi-size convolution kernels to extract multi-scale strong and weak semantic features. These features are fed into rotation-based region proposal and region of interest networks to produce object detections. Finally, rotational non-maximum suppression is applied to remove redundant detections. During training, we minimize joint horizontal and oriented bounding box loss functions, as well as a novel loss that enforces oriented boxes to be rectangular. Our method achieves 68.16% mAP on horizontal and 72.45% mAP on oriented bounding box detection tasks on the challenging DOTA dataset, outperforming all published methods by a large margin (+6% and +12% absolute improvement, respectively). Furthermore, it generalizes to two other datasets, NWPU VHR-10 and UCAS-AOD, and achieves competitive results with the baselines even when trained on DOTA. Our method can be deployed in multi-class object detection applications, regardless of the image and object scales and orientations, making it a great choice for unconstrained aerial and satellite imagery.Comment: ACCV 201
    • …
    corecore