13 research outputs found
Attentional Control and Intelligence: MRI Orbital Frontal Gray Matter and Neuropsychological Correlates
Attentional control is a key function of working memory that is hypothesized to play an important role in psychometric intelligence. To test the neuropsychological underpinnings of this hypothesis, we examined full-scale IQ, as measured by the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III), and attentional control, as measured by Trails B response time and Wisconsin Card Sorting (WCS) test perseverative errors in 78 healthy participants, 25 of whom also had available magnetic resonance imaging (MRI) gray matter volume studies of the orbital frontal cortex (OFC) parcellated into three regions: gyrus rectus, middle orbital gyrus, and lateral orbital gyrus. Hierarchical regression indicated that Trails B response time specifically explained 15.13% to 19.18% of the variation in IQ and WCS perseverative errors accounted for an additional 8.12% to 11.29% of the variance. Full-scale IQ correlated very strongly with right middle orbital gyrus gray matter volume (r=0.610, p=0.002), as did Trails B response time with left middle orbital gyrus gray matter volume (r=-0.608, p=0.003). Trails B response time and right middle orbital gyrus gray matter volume jointly accounted for approximately 32.95% to 54.82% of the variance in IQ scores. These results provided evidence of the unique contributions of attentional control and OFC gray matter to intelligence
Recommended from our members
Greater Extracellular Free Water in First-Episode Psychosis Predicts Better Neurocognitive Functioning
Free Water Imaging is a novel diffusion magnetic reasonance imaging (MRI) method that is able to separate changes affecting the extracellular space from those that reflect changes in neuronal cells and processes. A previous Free Water Imaging study in schizophrenia identified significantly greater extracellular water volume in the early stages of the disorder; however, itâs clinical and functional sequelae have not yet been investigated. Here, we applied Free Water Imaging to a larger cohort of 63 first-episode patients with psychosis and 70 healthy matched controls to better understand the functional significance of greater extracellular water. We used diffusion MRI data and the Tract-Based Spatial Statistics analytic pipeline to first analyze fractional anisotropy (FA), the most commonly employed metric for assessing white matter. This comparison was then followed by Free Water Imaging analysis, where two parameters, the fractional volume of extracellular free-water (FW) and cellular tissue FA (FA-t), were estimated and compared across the entire white matter skeleton between groups, and correlated with cognitive measures at baseline and following 12 weeks of antipsychotic treatment. Our results indicated lower FA across the whole brain in patients compared to healthy controls that overlap with significant increases in FW, with only limited decreases in FA-t. In addition, higher FW correlated with better neurocognitive functioning following 12 weeks of antipsychotic treatment. This is the first study to suggest that an extracellular water increase during the first-episode of psychosis, which may be indicative of an acute neuroinflammatory process, and/or cerebral edema may predict better functional outcome
Characterizing white matter changes in chronic schizophrenia: a free-water imaging multi-site study
Diffusion tensor imaging (DTI) studies in chronic schizophrenia have found widespread but often inconsistent patterns of white matter abnormalities. These studies have typically used the conventional measure of fractional anisotropy, which can be contaminated by extracellular free-water. A recent free-water imaging study reported reduced free-water corrected fractional anisotropy (FA) in chronic schizophrenia across several brain regions, but limited changes in the extracellular volume. The present study set out to validate these findings in a substantially larger sample. Tract-based spatial statistics (TBSS) was performed in 188 healthy controls and 281 chronic schizophrenia patients. Forty-two regions of interest (ROIs), as well as average whole-brain FA and FW were extracted from free-water corrected diffusion tensor maps. Compared to healthy controls, reduced FA was found in the chronic schizophrenia group in the anterior limb of the internal capsule bilaterally, the posterior thalamic radiation bilaterally, as well as the genu and body of the corpus callosum. While a significant main effect of group was observed for FW, none of the follow-up contrasts survived correction for multiple comparisons. The observed FA reductions in the absence of extracellular FW changes, in a large, multi-site sample of chronic schizophrenia patients, validate the pattern of findings reported by a previous, smaller free-water imaging study of a similar sample. The limited number of regions in which FA was reduced in the schizophrenia group suggests that actual white matter tissue degeneration in chronic schizophrenia, independent of extracellular FW, might be more localized than suggested previously