44 research outputs found
How humans transmit language:horizontal transmission matches word frequencies among peers on Twitter
Homeobox transcription factor muscle segment homeobox 2 (Msx2) correlates with good prognosis in breast cancer patients and induces apoptosis in vitro
Introduction: The homeobox-containing transcription factor muscle segment homeobox 2 (Msx2) plays an important role in mammary gland development. However, the clinical implications of Msx2 expression in breast cancer are unclear. The aims of this study were to investigate the potential clinical value of Msx2 as a breast cancer biomarker and to clarify its functional role in vitro. Methods: Msx2 gene expression was first examined in a well-validated breast cancer transcriptomic dataset of 295 patients. Msx2 protein expression was then evaluated by immunohistochemistry in a tissue microarray (TMA) containing 281 invasive breast tumours. Finally, to assess the functional role of Msx2 in vitro, Msx2 was ectopically expressed in a highly invasive breast tumour cell line (MDA-MB-231) and an immortalised breast cell line (MCF10a), and these cell lines were examined for changes in growth rate, cell death and cell signalling. Results: Examination of Msx2 mRNA expression in a breast cancer transcriptomic dataset demonstrated that increased levels of Msx2 were associated with good prognosis (P = 0.011). Evaluation of Msx2 protein expression on a TMA revealed that Msx2 was detectable in both tumour cell nuclei and cytoplasm. Cytoplasmic Msx2 expression was associated with low grade tumours (P = 0.012) and Ki67 negativity (P = 0.018). Nuclear Msx2 correlated with low-grade tumours (P = 0.015), estrogen receptor positivity (P = 0.038), low Ki67 (P = 0.005) and high cyclin D1 expression (P = 0.037). Increased cytoplasmic Msx2 expression was associated with a prolonged breast cancer-specific survival (P = 0.049), recurrence-free survival (P = 0.029) and overall survival (P = 0.019). Ectopic expression of Msx2 in breast cell lines resulted in radically decreased cell viability mediated by induction of cell death via apoptosis. Further analysis of Msx2-expressing cells revealed increased levels of p21 and phosphorylated extracellular signal-regulated kinase (ERK) and decreased levels of Survivin and the 'split ends' (SPEN) protein family member RBM15. Conclusions: We conclude that increased Msx2 expression results in improved outcome for breast cancer patients, possibly by increasing the likelihood of tumour cell death by apoptosis
On the thermodynamic origin of metabolic scaling
This work has been funded by projects AYA2013-48623-C2-2, FIS2013-41057-P, CGL2013-46862-C2-1-P and SAF2015-65878-R from the Spanish Ministerio de Economa y Competitividad and PrometeoII/2014/086, PrometeoII/2014/060 and PrometeoII/2014/065 from the Generalitat Valenciana (Spain). BL acknowledges funding from a Salvador de Madariaga fellowship, and L.L. acknowledges funding from EPSRC Early Career fellowship EP/P01660X/1
How individuals change language
Languages emerge and change over time at the population level though interactions between individual speakers. It is, however, hard to directly observe how a single speaker's linguistic innovation precipitates a population-wide change in the language, and many theoretical proposals exist. We introduce a very general mathematical model that encompasses a wide variety of individual-level linguistic behaviours and provides statistical predictions for the population-level changes that result from them. This model allows us to compare the likelihood of empirically-attested changes in definite and indefinite articles in multiple languages under different assumptions on the way in which individuals learn and use language. We find that accounts of language change that appeal primarily to errors in childhood language acquisition are very weakly supported by the historical data, whereas those that allow speakers to change incrementally across the lifespan are more plausible, particularly when combined with social network effects
Host Responses to Intestinal Microbial Antigens in Gluten-Sensitive Mice
BACKGROUND AND AIMS: Excessive uptake of commensal bacterial antigens through a permeable intestinal barrier may influence host responses to specific antigen in a genetically predisposed host. The aim of this study was to investigate whether intestinal barrier dysfunction induced by indomethacin treatment affects the host response to intestinal microbiota in gluten-sensitized HLA-DQ8/HCD4 mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-DQ8/HCD4 mice were sensitized with gluten, and gavaged with indomethacin plus gluten. Intestinal permeability was assessed by Ussing chamber; epithelial cell (EC) ultra-structure by electron microscopy; RNA expression of genes coding for junctional proteins by Q-real-time PCR; immune response by in-vitro antigen-specific T-cell proliferation and cytokine analysis by cytometric bead array; intestinal microbiota by fluorescence in situ hybridization and analysis of systemic antibodies against intestinal microbiota by surface staining of live bacteria with serum followed by FACS analysis. Indomethacin led to a more pronounced increase in intestinal permeability in gluten-sensitized mice. These changes were accompanied by severe EC damage, decreased E-cadherin RNA level, elevated IFN-gamma in splenocyte culture supernatant, and production of significant IgM antibody against intestinal microbiota. CONCLUSION: Indomethacin potentiates barrier dysfunction and EC injury induced by gluten, affects systemic IFN-gamma production and the host response to intestinal microbiota antigens in HLA-DQ8/HCD4 mice. The results suggest that environmental factors that alter the intestinal barrier may predispose individuals to an increased susceptibility to gluten through a bystander immune activation to intestinal microbiota
Teacher Wellbeing: The Importance of TeacherâStudent Relationships
Many studies have examined the importance of teacher-student relationships for the development of children. Much less is known, however, about how these relationships impact the professional and personal lives of teachers. This review considers the importance of teacher-student relationships for the wellbeing of teachers guided by the Transactional Model of Stress and Coping of Lazarus (1991). Based on theories on interpersonal relationships, it is postulated that teachers have a basic need for relatedness with the students in their class that originates from the close proximity between teacher and student. It is discussed that teachers internalize experiences with students in representational models of relationships that guide emotional responses in daily interactions with students, and changes teacher wellbeing in the long run. In addition, the notion of mental representations of relationships at different levels of generalization could offer a window to understand how individual teacher-student relationships may affect the professional and personal self-esteem of teachers. Lastly, it is argued that the influence of student misbehavior on teacher stress may be more fully understood from a relationship perspective. The review shows that few studies have directly tested these propositions and offers suggestions for future research
Genetic Association Study Identifies HSPB7 as a Risk Gene for Idiopathic Dilated Cardiomyopathy
Dilated cardiomyopathy (DCM) is a structural heart disease with strong genetic background. Monogenic forms of DCM are observed in families with mutations located mostly in genes encoding structural and sarcomeric proteins. However, strong evidence suggests that genetic factors also affect the susceptibility to idiopathic DCM. To identify risk alleles for non-familial forms of DCM, we carried out a case-control association study, genotyping 664 DCM cases and 1,874 population-based healthy controls from Germany using a 50K human cardiovascular disease bead chip covering more than 2,000 genes pre-selected for cardiovascular relevance. After quality control, 30,920 single nucleotide polymorphisms (SNP) were tested for association with the disease by logistic regression adjusted for gender, and results were genomic-control corrected. The analysis revealed a significant association between a SNP in HSPB7 gene (rs1739843, minor allele frequency 39%) and idiopathic DCM (pâ=â1.06Ă10â6, ORâ=â0.67 [95% CI 0.57â0.79] for the minor allele T). Three more SNPs showed p < 2.21Ă10â5. De novo genotyping of these four SNPs was done in three independent case-control studies of idiopathic DCM. Association between SNP rs1739843 and DCM was significant in all replication samples: Germany (nâ=â564, nâ=â981 controls, pâ=â2.07Ă10â3, ORâ=â0.79 [95% CI 0.67â0.92]), France 1 (nâ=â433 cases, nâ=â395 controls, pâ=â3.73Ă10â3, ORâ=â0.74 [95% CI 0.60â0.91]), and France 2 (nâ=â249 cases, nâ=â380 controls, pâ=â2.26Ă10â4, ORâ=â0.63 [95% CI 0.50â0.81]). The combined analysis of all four studies including a total of nâ=â1,910 cases and nâ=â3,630 controls showed highly significant evidence for association between rs1739843 and idiopathic DCM (pâ=â5.28Ă10â13, ORâ=â0.72 [95% CI 0.65â0.78]). None of the other three SNPs showed significant results in the replication stage
Exploiting Fast-Variables to Understand Population Dynamics and Evolution
We describe a continuous-time modelling framework for biological population
dynamics that accounts for demographic noise. In the spirit of the methodology
used by statistical physicists, transitions between the states of the system
are caused by individual events while the dynamics are described in terms of
the time-evolution of a probability density function. In general, the
application of the diffusion approximation still leaves a description that is
quite complex. However, in many biological applications one or more of the
processes happen slowly relative to the system's other processes, and the
dynamics can be approximated as occurring within a slow low-dimensional
subspace. We review these time-scale separation arguments and analyse the more
simple stochastic dynamics that result in a number of cases. We stress that it
is important to retain the demographic noise derived in this way, and emphasise
this point by showing that it can alter the direction of selection compared to
the prediction made from an analysis of the corresponding deterministic model.Comment: 33 pages, 9 figure
International Consensus Statement on Rhinology and Allergy: Rhinosinusitis
Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICARâRS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICARâRSâ2021 as well as updates to the original 140 topics. This executive summary consolidates the evidenceâbased findings of the document. Methods: ICARâRS presents over 180 topics in the forms of evidenceâbased reviews with recommendations (EBRRs), evidenceâbased reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICARâRSâ2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidenceâbased management algorithm is provided. Conclusion: This ICARâRSâ2021 executive summary provides a compilation of the evidenceâbased recommendations for medical and surgical treatment of the most common forms of RS