4 research outputs found

    A feasibility study on the use of low-dimensional simulations for database generation in adaptive chemistry approaches

    Full text link
    LES/PDF approaches can be used for simulating challenging turbulent combustion configurations with strong turbulence chemistry interactions. Transported PDF methods are computationally expensive compared to flamelet-like turbulent combustion models. The pre-partitioned adaptive chemistry (PPAC) methodology was developed to address this cost differential. PPAC entails an offline preprocessing stage, where a set of reduced models are generated starting from an initial database of representative compositions. At runtime, this set of reduced models are dynamically utilized during the reaction fractional step leading to computational savings. We have recently combined PPAC with in-situ adaptive tabulation (ISAT) to further reduce the computational cost. We have shown that the combined method reduced the average wall-clock time per time step of large-scale LES/particle PDF simulations of turbulent combustion by 39\%. A key assumption in PPAC is that the initial database used in the offline stage is representative of the compositions encountered at runtime. In our previous study this assumption was trivially satisfied as the initial database consisted of compositions extracted from the turbulent combustion simulation itself. Consequently, a key open question remains as to whether such databases can be generated without having access to the turbulent combustion simulation. Towards answering this question, in the current work, we explore whether the compositions for forming such a database can be extracted from computationally-efficient low-dimensional simulations such as 1D counterflow flames and partially stirred reactors. We show that a database generated using compositions extracted from a partially stirred reactor configuration leads to performance comparable to the optimal case, wherein the database is comprised of compositions extracted directly from the LES/PDF simulation itself

    Quantitative computational infrared imaging of buoyant diffusion flames

    No full text
    Studies of infrared radiation from turbulent buoyant diffusion flames impinging on structural elements have applications to the development of fire models. A numerical and experimental study of radiation from buoyant diffusion flames with and without impingement on a flat plate is reported. Quantitative images of the radiation intensity from the flames are acquired using a high speed infrared camera. Large eddy simulations are performed using fire dynamics simulator (FDS version 6). The species concentrations and temperature from the simulations are used in conjunction with a narrow-band radiation model (RADCAL) to solve the radiative transfer equation. The computed infrared radiation intensities rendered in the form of images and compared with the measurements. The measured and computed radiation intensities reveal necking and bulging with a characteristic frequency of 7.1 Hz which is in agreement with previous empirical correlations. The results demonstrate the effects of stagnation point boundary layer on the upstream buoyant shear layer. The coupling between these two shear layers presents a model problem for sub-grid scale modeling necessary for future large eddy simulations
    corecore