47 research outputs found

    Stirring the Embers: High Sensitivity VLBI Observations of GRB030329

    Get PDF
    We present high sensitivity Very Long Baseline Interferometry (VLBI) observations 806 days after the gamma-ray burst of 2003 March 29 (GRB030329). The angular diameter of the radio afterglow is measured to be 0.347 +- 0.09 mas, corresponding to 0.99 +- 0.26 pc at the redshift of GRB030329 (z = 0.1685). The evolution of the image size favors a uniform external density over an R^-2 wind-like density profile (at distances of R >~10^18 cm from the source), although the latter cannot be ruled out yet. The current apparent expansion velocity of the image size is only mildly relativistic, suggesting a non-relativistic transition time of t_NR ~ 1 yr. A rebrightening, or at least a significant flattening in the flux decay, is expected within the next several years as the counter-jet becomes visible (this has not yet been observed). An upper limit of <1.9c is set on the proper motion of the flux centroid.Comment: 16 pages, 5 figures, accepted for publication in Astrophysical Journa

    The relation between accretion rate and jet power in X-ray luminous elliptical galaxies

    Full text link
    Using Chandra X-ray observations of 9 nearby, X-ray luminous ellipticals with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the X-ray data and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, inferred from the energies and timescales required to inflate the cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates by a power law model. A significant fraction (2.2^{+1.0}_{-0.7} per cent, for P_jet=10^{43} erg/s) of the energy associated with the rest mass of material entering the accretion radius eventually emerges in the jets. The data also hint that this fraction may rise slightly with increasing jet power. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The tight correlation between P_Bondi and P_jet suggests that the Bondi formulae provide a reasonable description of the accretion process, despite the likely presence of magnetic pressure and angular momentum in the accreting gas, and that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole `engines' at the hearts of large elliptical galaxies and groups can feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.Comment: Accepted for publication in MNRAS. 10 pages, 4 figures. Includes an enhanced statistical analysis and some additional data. Conclusions unchange

    Post-Newtonian SPH calculations of binary neutron star coalescence. I. Method and first results

    Get PDF
    We present the first results from our Post-Newtonian (PN) Smoothed Particle Hydrodynamics (SPH) code, which has been used to study the coalescence of binary neutron star (NS) systems. The Lagrangian particle-based code incorporates consistently all lowest-order (1PN) relativistic effects, as well as gravitational radiation reaction, the lowest-order dissipative term in general relativity. We test our code on sequences of single NS models of varying compactness, and we discuss ways to make PN simulations more relevant to realistic NS models. We also present a PN SPH relaxation procedure for constructing equilibrium models of synchronized binaries, and we use these equilibrium models as initial conditions for our dynamical calculations of binary coalescence. Though unphysical, since tidal synchronization is not expected in NS binaries, these initial conditions allow us to compare our PN work with previous Newtonian results. We compare calculations with and without 1PN effects, for NS with stiff equations of state, modeled as polytropes with Γ=3\Gamma=3. We find that 1PN effects can play a major role in the coalescence, accelerating the final inspiral and causing a significant misalignment in the binary just prior to final merging. In addition, the character of the gravitational wave signal is altered dramatically, showing strong modulation of the exponentially decaying waveform near the end of the merger. We also discuss briefly the implications of our results for models of gamma-ray bursts at cosmological distances.Comment: RevTeX, 37 pages, 17 figures, to appear in Phys. Rev. D, minor corrections onl
    corecore