8 research outputs found

    Structural and functional characteristics of various forms of red pigment of yeast Saccharomyces cerevisiae and its synthetic analog

    No full text
    Structural and functional characteristics of the yeast red pigment (product of polymerization of N1-(β-D-ribofuranosyl)-5-aminoimidazole), isolated from ade1 mutant cells of Saccharomyces cerevisiae and its deribosylated derivatives (obtained by acid hydrolysis) and its synthetic pigment analogue (product of polymerization of N1-methyl-5-aminoimidazole in vitro) were obtained. Products of in vitro polymerization were identified using mass spectrometry. The ability of these pigments to inhibit amyloid formation using insulin fibrils was compared. All the studied compounds are able to interact with amyloids and inhibit their growth. Electron and atomic force microscopy revealed a common feature inherent in the insulin fibrils formed in the presence of these compounds—they are merged into conglomerates more stable and resistant to the effects of ultrasound than are insulin aggregates grown without pigments. We suggest that all these compounds can cause coalescence of fibrils partially blocking the loose ends and, thereby, inhibit attachment of monomers and formation of new fibril

    Comparative structural and functional characteristics of different forms of saccharomyces cerevisiae red pigment and its synthetic analogue

    No full text
    Structural and functional characteristics of the yeast red pigment (product of polymerization of N'-flí-D-ri-bofuranosyl)-5-aminoimadazole), isolated from adel 1 mutant cells of Saccharomyces cerevisiae, its deribosy-lated derivatives (obtained by acid hydrolysis) and its synthetic pigment analogue (product of polymerization of N'-methyl-5-aminoimadazole in vitro) has been obtained. Products of in vitro polymerization were identified using mass spectrometry. The ability of these pigments to inhibit amyloid formation using insulin fibrils was compared. The entire compounds studied were able to interact with amyloids and inhibit their growth. Electron and atomic force microscopy revealed a common feature inherent in the insulin fibrils formed in presence of these compounds - they were merged into conglomerates that were more stable and resistant to the effects of ultrasound in comparison with insulin aggregates grown without pigments. We speculate that all these compounds can cause coalescence of fibrils, partially block their loose ends and, thereby, inhibit the attachment of new monomers to growing fibril

    Yeast red pigment modifies Amyloid beta growth in Alzheimer disease models in both Saccharomyces cerevisiae and Drosophila melanogaster

    No full text
    The effect of yeast red pigment on amyloid-β (Aβ) aggregation and fibril growth was studied in yeasts, fruit flies and in vitro. Yeast strains accumulating red pigment (red strains) contained less amyloid and had better survival rates compared to isogenic strains without red pigment accumulation (white strains). Confocal and fluorescent microscopy was used to visualise fluorescent Aβ-GFP aggregates. Yeast cells containing less red pigment had more Aβ-GFP aggregates despite the lower level of overall GFP fluorescence. Western blot analysis with anti-GFP, anti-Aβ and A11 antibodies also revealed that red cells contained a considerably lower amount of Aβ GFP aggregates as compared to white cells. Similar results were obtained with exogenous red pigment that was able to penetrate yeast cells. In vitro experiments with thioflavine and TEM showed that red pigment effectively decreased Aβ fibril growth. Transgenic flies expressing Aβ were cultivated on medium containing red and white isogenic yeast strains. Flies cultivated on red strains had a significant decrease in Aβ accumulation levels and brain neurodegeneration. They also demonstrated better memory and learning indexes and higher locomotor abilit
    corecore