4 research outputs found

    HCV Epitope, Homologous to Multiple Human Protein Sequences, Induces a Regulatory T Cell Response in Infected Patients

    Get PDF
    Background & Aims: Spontaneous resolution of hepatitis C virus (HCV) infections depends upon a broad T cell response to multiple viral epitopes. Most patients fail to clear infections spontaneously, however, and develop chronic disease. The elevated number and function of CD3+CD4+CD25+FoxP3+ regulatory T(reg) cells in HCV-infected patients suggest the role of Treg cells in impaired viral clearance. The factors contributing to increased Treg cell activity in chronic hepatitis C cases remain to be delineated. Methods: Immunoinformatics tools were used to predict promiscuous, highly-conserved HLA-DRB1- restricted immunogenic consensus sequences (ICS), each composed of multiple T cell epitopes. These sequences were synthesized and added to cultures of peripheral blood mononuclear cells (PBMCs) derived from patients who resolved HCV infection spontaneously, patients with persistent infection, and non-infected individuals. The cells were collected following 5 days incubation, quantified and characterized by flow cytometry. Results: One ICS, HCV_G1_p7_794, induced a marked increase in Treg cells in PBMC cultures derived from infected patients, but not patients who spontaneously cleared HCV or non-infected individuals. An analogous human peptide (p7_794), on the other hand, induced a significant increase in Treg cells among PBMCs derived from both HCV infected and non-infected individuals. JanusMatrix analyses determined that HCV_G1_p7_794 is comprised of Treg cell epitopes that exhibit extensive cross-reactivity with the human proteome. Conclusion: A virus-encoded peptide (HCV_G1_p7_794) with extensive human homology activates cross-reactive CD3+CD4+CD25+FoxP3+ nTreg cells, which potentially contribute to immunosuppression and chronic hepatitis C

    Induction of anti-leukemic responses by stimulation of leukemic CD3+ cells with allogeneic stimulator cells

    No full text
    Abstract Background Immunotherapeutic protocols have focused on identification of stimuli that induce effective anti-leukemic immune responses. One potent immune stimulus is the encounter with allogeneic cells. Our group previously showed that the infusion of haploidentical donor white blood cells (1–2 × 108 CD3+ cells/kg) into patients with refractory hematological malignancies induced responses of varying magnitude in over half of the patients. Because donor cells were eliminated within 2 weeks in these patients, it is presumed that the responses of recipient lymphocytes were critically important in achieving prolonged anti-leukemic responses. Methods The role of patient CD3+ cells in anti-leukemic responses was examined by isolating peripheral blood mononuclear cells from newly diagnosed leukemic patients. Immunophenotyping was performed on these peripheral blood mononuclear cells. CD3+ cells were isolated from the peripheral blood mononuclear cells and tested for their ability to proliferate and lyse autologous leukemic cells when stimulated with unrelated allogeneic cells. Results Allostimulated CD3+ cells effectively generated cytolytic responses to autologous CD3-cells in 11/21 patients. Increased numbers of CD4+ cells expressing high levels of granzyme A, B and perforin and CD8+CD39+ cells were found in nonresponsive CD3+ cells. Conclusions These results indicate that CD3+ cells from leukemic patients are capable of generating anti-leukemic responses when stimulated with unrelated allogeneic cells. This model can be used to identify approaches using alloreactive responses by patient lymphocytes to enhance in vivo anti-leukemic responses
    corecore