38 research outputs found
Semantic and generative models for lossy text compression
The apparent divergence between the research paradigms of text and image compression has led us to consider the potential for applying methods developed for one domain to the other. This paper examines the idea of "lossy" text compression, which transmits an approximation to the input text rather than the text itself. In image coding, lossy techniques have proven to yield compression factors that are vastly superior to those of the best lossless schemes, and we show that this a also the case for text. Two different methods are described here, one inspired by the use of fractals in image compression. They can be combined into an extremely effective technique that provides much better compression than the present state of the art and yet preserves a reasonable degree of match between the original and received text. The major challenge for lossy text compression is identified as the reliable evaluation of the quality of this match
On Hilberg's Law and Its Links with Guiraud's Law
Hilberg (1990) supposed that finite-order excess entropy of a random human
text is proportional to the square root of the text length. Assuming that
Hilberg's hypothesis is true, we derive Guiraud's law, which states that the
number of word types in a text is greater than proportional to the square root
of the text length. Our derivation is based on some mathematical conjecture in
coding theory and on several experiments suggesting that words can be defined
approximately as the nonterminals of the shortest context-free grammar for the
text. Such operational definition of words can be applied even to texts
deprived of spaces, which do not allow for Mandelbrot's ``intermittent
silence'' explanation of Zipf's and Guiraud's laws. In contrast to
Mandelbrot's, our model assumes some probabilistic long-memory effects in human
narration and might be capable of explaining Menzerath's law.Comment: To appear in Journal of Quantitative Linguistic
Language Model Co-occurrence Linking for Interleaved Activity Discovery
As ubiquitous computer and sensor systems become abundant, the potential for automatic identification and tracking of human behaviours becomes all the more evident. Annotating complex human behaviour datasets to achieve ground truth for supervised training can however be extremely labour-intensive, and error prone. One possible solution to this problem is activity discovery: the identification of activities in an unlabelled dataset by means of an unsupervised algorithm. This paper presents a novel approach to activity discovery that utilises deep learning based language production models to construct a hierarchical, tree-like structure over a sequential vector of sensor events. Our approach differs from previous work in that it explicitly aims to deal with interleaving (switching back and forth between between activities) in a principled manner, by utilising the long-term memory capabilities of a recurrent neural network cell. We present our approach and test it on a realistic dataset to evaluate its performance. Our results show the viability of the approach and that it shows promise for further investigation. We believe this is a useful direction to consider in accounting for the continually changing nature of behaviours
HALO: Post-Link Heap-Layout Optimisation
Today, general-purpose memory allocators dominate the landscape of dynamic memory management. While these so- lutions can provide reasonably good behaviour across a wide range of workloads, it is an unfortunate reality that their behaviour for any particular workload can be highly suboptimal. By catering primarily to average and worst-case usage patterns, these allocators deny programs the advantages of domain-specific optimisations, and thus may inadvertently place data in a manner that hinders performance, generating unnecessary cache misses and load stalls.
To help alleviate these issues, we propose HALO: a post-link profile-guided optimisation tool that can improve the layout of heap data to reduce cache misses automatically. Profiling the target binary to understand how allocations made in different contexts are related, we specialise memory-management routines to allocate groups of related objects from separate pools to increase their spatial locality. Unlike other solutions of its kind, HALO employs novel grouping and identification algorithms which allow it to create tight-knit allocation groups using the entire call stack and to identify these efficiently at runtime. Evaluation of HALO on contemporary out-of-order hardware demonstrates speedups of up to 28% over jemalloc, out-performing a state-of-the-art data placement technique from the literature
Artificial Sequences and Complexity Measures
In this paper we exploit concepts of information theory to address the
fundamental problem of identifying and defining the most suitable tools to
extract, in a automatic and agnostic way, information from a generic string of
characters. We introduce in particular a class of methods which use in a
crucial way data compression techniques in order to define a measure of
remoteness and distance between pairs of sequences of characters (e.g. texts)
based on their relative information content. We also discuss in detail how
specific features of data compression techniques could be used to introduce the
notion of dictionary of a given sequence and of Artificial Text and we show how
these new tools can be used for information extraction purposes. We point out
the versatility and generality of our method that applies to any kind of
corpora of character strings independently of the type of coding behind them.
We consider as a case study linguistic motivated problems and we present
results for automatic language recognition, authorship attribution and self
consistent-classification.Comment: Revised version, with major changes, of previous "Data Compression
approach to Information Extraction and Classification" by A. Baronchelli and
V. Loreto. 15 pages; 5 figure
Evaluating deterministic motif significance measures in protein databases
<p>Abstract</p> <p>Background</p> <p>Assessing the outcome of motif mining algorithms is an essential task, as the number of reported motifs can be very large. Significance measures play a central role in automatically ranking those motifs, and therefore alleviating the analysis work. Spotting the most interesting and relevant motifs is then dependent on the choice of the right measures. The combined use of several measures may provide more robust results. However caution has to be taken in order to avoid spurious evaluations.</p> <p>Results</p> <p>From the set of conducted experiments, it was verified that several of the selected significance measures show a very similar behavior in a wide range of situations therefore providing redundant information. Some measures have proved to be more appropriate to rank highly conserved motifs, while others are more appropriate for weakly conserved ones. Support appears as a very important feature to be considered for correct motif ranking. We observed that not all the measures are suitable for situations with poorly balanced class information, like for instance, when positive data is significantly less than negative data. Finally, a visualization scheme was proposed that, when several measures are applied, enables an easy identification of high scoring motifs.</p> <p>Conclusion</p> <p>In this work we have surveyed and categorized 14 significance measures for pattern evaluation. Their ability to rank three types of deterministic motifs was evaluated. Measures were applied in different testing conditions, where relations were identified. This study provides some pertinent insights on the choice of the right set of significance measures for the evaluation of deterministic motifs extracted from protein databases.</p