13 research outputs found

    Gesetzgebungsbedarf für Wettbewerb und Regulierung in der globalen Internetökonomie?

    Full text link
    Die Internetökonomie, definiert als eine im Wesentlichen digital basierte und elektronisch gesteuerte Ökonomie, welche die computerbasierte Vernetzung nutzt, um Kommunikation, Interaktion und Transaktion in einem globalen Rahmen zu ermöglichen, bringt neue Ursachen- und Wirkungszusammenhänge hervor, die auch auf kartellrechtliche Bewertungen Auswirkungen haben. Die Entwicklung moderner Informations- und Telekommunikationstechnologien, insbesondere des Internets, ermöglicht Unternehmen die Verfolgung einer hybriden Marktstrategie. Neben reinen Online-Produkten, die ausschließlich für den digitalen Handel und die digitale Distribution entwickelt werden und bei denen sämtliche Transaktionsprozesse online abgewickelt werden können, ist durch die Kombination von herkömmlichen Offline-Gütern mit den Merkmalen der Internetökonomie ein neuer Bereich der hybriden Märkte geschaffen worden. Die Vorteile des Internets werden dabei verstärkt im Rahmen einzelner Transaktionsphasen zur Unterstützung der Transaktionsabwicklung eingesetzt. Die Frage ist, wie sich diese Fortschritte im Rahmen der Internetökonomie auf die kartellrechtliche Bewertung derartiger Sachverhalte auswirken. Das Fehlen sichtbarer Grenzen im Internet stellt das Kartellrechtssystem vor neue Fragen. Bisher existiert keine spezifische gesetzliche Grundlage oder Rechtsprechung, die es ermöglicht, auf diese Herausforderung zu reagieren. Die Diskrepanz zwischen einer im und über das Internet global zusammenwachsenden Ökonomie und national gebundener Regulierung der Wirtschaft muss mit den vorhandenen Mitteln des Kartellrechts gelöst werden. Der Frage, ob diese Mittel ausreichen, um den Herausforderungen der Internetökonomie für einen freien Wettbewerb zu begegnen, wird im Rahmen der folgenden Untersuchung nachgegangen

    The human homolog of Escherichia coli endonuclease V is a nucleolar protein with affinity for branched DNA structures.

    Get PDF
    Loss of amino groups from adenines in DNA results in the formation of hypoxanthine (Hx) bases with miscoding properties. The primary enzyme in Escherichia coli for DNA repair initiation at deaminated adenine is endonuclease V (endoV), encoded by the nfi gene, which cleaves the second phosphodiester bond 3' of an Hx lesion. Endonuclease V orthologs are widespread in nature and belong to a family of highly conserved proteins. Whereas prokaryotic endoV enzymes are well characterized, the function of the eukaryotic homologs remains obscure. Here we describe the human endoV ortholog and show with bioinformatics and experimental analysis that a large number of transcript variants exist for the human endonuclease V gene (ENDOV), many of which are unlikely to be translated into functional protein. Full-length ENDOV is encoded by 8 evolutionary conserved exons covering the core region of the enzyme, in addition to one or more 3'-exons encoding an unstructured and poorly conserved C-terminus. In contrast to the E. coli enzyme, we find recombinant ENDOV neither to incise nor bind Hx-containing DNA. While both enzymes have strong affinity for several branched DNA substrates, cleavage is observed only with E. coli endoV. We find that ENDOV is localized in the cytoplasm and nucleoli of human cells. As nucleoli harbor the rRNA genes, this may suggest a role for the protein in rRNA gene transactions such as DNA replication or RNA transcription

    Human ENDOV binds branched DNA substrates.

    Full text link
    <p>The affinities of <i>E. coli</i> and human endonuclease V for different DNA substrates were tested by electrophoretic mobility shift assay. Substrates used were: (<b>A</b>): Undamaged DNA, (<b>B</b>): Hypoxanthine, (<b>C</b>): 5′-flap, (<b>D)</b>: 3′-flap, (<b>E</b>): pseudo-Y, (<b>F</b>): fork, (<b>G</b>): 3-way junction and (<b>H</b>): Holliday junction (asterisk indicates the <sup>32</sup>P-labelled strands). 2–8 pmol <i>E. coli</i> endoV and 1.6–6.4 pmol ENDOV enzymes were assayed with 10 fmol substrates as indicated. All experiments were repeated 2 to 3 times and a representative assay is shown. Bound substrates relative to free were quantified and are shown to the right. F = free DNA, B = bound DNA, - = no enzyme added, filled circles = <i>E. coli</i> endoV; open circles = ENDOV.</p

    The RK ENDOV mutant has lost its affinity for branched DNA substrates.

    Full text link
    <p>Three ENDOV site specific mutants, RK (R248E/K249E double mutant), Y91A, and Wg (residues P90–S93 replaced with 4 glycins), wild type enzyme (3.2 and 6.4 pmol) and <i>E. coli</i> endoV (4 pmol) were tested for their ability to bind branched DNA substrates. Substrates tested were: (<b>A</b>): 5′-flap, (<b>B</b>): 3′-flap, (<b>C</b>): pseudo-Y, (<b>D</b>), fork, (<b>E</b>): 3-way junction and (<b>F</b>) Holliday junction. F = free DNA, B = bound DNA, - = no enzyme added.</p

    Location of structural elements in endonuclease V.

    Full text link
    <p>(<b>A</b>) Structure of <i>Tma</i> endoV binding to deaminated DNA (PDB code 2W35 <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0047466#pone.0047466-Dalhus1" target="_blank">[23]</a>) showing the central location of the strand-separating wedge (PYIP motif) close to the damage recognition pocket. (<b>B</b>). Homology model of human ENDOV showing the location of mutated residues Arg248 and Lys249 (yellow), as well as residues forming the PYVS motif in exon 3 (yellow), which were also mutated. A loop comprising residues 164–180 could not be reliably modelled and is not included (dashed line).</p

    Schematic representation of splicing of human, other tetrapod and sea urchin <i>ENDOV</i> mRNAs.

    Full text link
    <p>(<b>A</b>) The segments of the <i>ENDOV</i> transcripts encoding the conserved protein core are spliced identically, including the intron phases, in rodents, pig, chicken, frog and the echinoderm sea urchin. The position of the start (ATG) and stop (asterisk) codons are indicated above the relevant exons (not shown to scale), while intron phases are shown above the introns. These are defined as the position of the intron within a codon, with phase 0, 1, and 2 placed before the first nucleotide, after the first nucleotide, and after the second nucleotide, respectively. The structurally disordered and poorly conserved C-terminus of ENDOV is encoded by one or more 3′ exons and has variable length, <i>e.g.</i> ∼85 and ∼5 residues in mouse and frog, respectively. (<b>B</b>) Most previously published spliced human mRNAs are lacking one or several 5′ exons, in particular exon 3, while alternative splicing at the 3′ end results in multiple variants. Four representative full length mRNAs are shown with accession numbers from GenBank <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0047466#pone.0047466-Benson1" target="_blank">[29]</a>.</p

    Upregulation of <i>ENDOV</i> transcription during quiescence.

    Full text link
    <p>(<b>A</b>) Human embryonic fibroblasts were arrested in G0 by serum starvation at confluence and released by replating 1∶4 in culture medium with serum. <i>ENDOV</i> transcript levels (exons 2 to 3) were measured during cell cycle progression after G0 release at indicated time points by qRT-PCR. G0 cells were used as the reference for calculations. The average of 3 parallels (same RNA) was calculated and standard deviation is shown. Cell cycle distribution was monitored using propidium iodide staining followed by flow cytometry after release from the block. The percentage of cells in each cell cycle is presented in the table. The experiment was repeated twice with similar results. (<b>B</b>) Nothern blot analysis of <i>ENDOV</i> mRNA. mRNA was isolated from human fibroblasts that were unsynchronised (u), G0 arrested (G0) and allowed to proliferate for 24 hours (t<sub>24</sub>), separated by electrophoresis and transferred to a nylon membrane. Hybridisation signals with probes spanning exons 4–8, exon 10, exon 3 of <i>ENDOV</i> and for β<i>-ACTIN</i> are shown. M is the RNA size standard as indicated (in kilobases).</p

    Expression of <i>ENDOV</i> in human cancers.

    Full text link
    <p>Transcript profiling was performed using a cancer tissue qPCR array and primers amplifying exons 6 to 8 of <i>ENDOV</i>. cDNA levels are normalised to β<i>-ACTIN</i>. <i>ENDOV</i> mRNA levels were calculated relative to the tissue with lowest expression level (adrenal gland). Tumour and normal tissue were grouped according to their origin and the average and standard deviation were calculated for each group. The experiment was performed twice with similar results.</p
    corecore