103 research outputs found
Laser-Induced Evoked Potentials in the Brain after Nonperceptible Optical Stimulation at the Neiguan Acupoint: A Preliminary Report
We report on small but reproducible human cerebral evoked potentials after bilateral nonperceptible laser needle (658 nm, 40 mW, 500 μm, 1 Hz) irradiation of the Neiguan acupoint (PC6). The results which are unique in scientific literature were obtained in a 26-year-old female healthy volunteer within a joint study between the Medical University of Graz, the Karl-Franzens University of Graz, and the Graz University of Technology. The findings of the 32-channel evoked potential analysis indicate that exposure to laser needle stimulation with a frequency of 1 Hz can modulate the ascending reticular activating system. Further studies are absolutely necessary to confirm or refute the preliminary findings
Temporal Coding of Brain Patterns for Direct Limb Control in Humans
For individuals with a high spinal cord injury (SCI) not only the lower limbs, but also the upper extremities are paralyzed. A neuroprosthesis can be used to restore the lost hand and arm function in those tetraplegics. The main problem for this group of individuals, however, is the reduced ability to voluntarily operate device controllers. A brain–computer interface provides a non-manual alternative to conventional input devices by translating brain activity patterns into control commands. We show that the temporal coding of individual mental imagery pattern can be used to control two independent degrees of freedom – grasp and elbow function – of an artificial robotic arm by utilizing a minimum number of EEG scalp electrodes. We describe the procedure from the initial screening to the final application. From eight naïve subjects participating online feedback experiments, four were able to voluntarily control an artificial arm by inducing one motor imagery pattern derived from one EEG derivation only
Virtual reality in neurologic rehabilitation of spatial disorientation
BACKGROUND: Topographical disorientation (TD) is a severe and persistent impairment of spatial orientation and navigation in familiar as well as new environments and a common consequence of brain damage. Virtual reality (VR) provides a new tool for the assessment and rehabilitation of TD. In VR training programs different degrees of active motor control over navigation may be implemented (i.e. more passive spatial navigation vs. more active). Increasing demands of active motor control may overload those visuo-spatial resources necessary for learning spatial orientation and navigation. In the present study we used a VR-based verbally-guided passive navigation training program to improve general spatial abilities in neurologic patients with spatial disorientation. METHODS: Eleven neurologic patients with focal brain lesions, which showed deficits in spatial orientation, as well as 11 neurologic healthy controls performed a route finding training in a virtual environment. Participants learned and recalled different routes for navigation in a virtual city over five training sessions. Before and after VR training, general spatial abilities were assessed with standardized neuropsychological tests. RESULTS: Route finding ability in the VR task increased over the five training sessions. Moreover, both groups improved different aspects of spatial abilities after VR training in comparison to the spatial performance before VR training. CONCLUSIONS: Verbally-guided passive navigation training in VR enhances general spatial cognition in neurologic patients with spatial disorientation as well as in healthy controls and can therefore be useful in the rehabilitation of spatial deficits associated with TD
Ability to Gain Control Over One’s Own Brain Activity and its Relation to Spiritual Practice: A Multimodal Imaging Study
Spiritual practice, such as prayer or meditation, is associated with focusing attention on internal states and self-awareness processes. As these cognitive control mechanisms presumably are also important for neurofeedback (NF), we investigated whether people who pray frequently (N = 20) show a higher ability of self-control over their own brain activity compared to a control group of individuals who rarely pray (N = 20). All participants underwent structural magnetic resonance imaging (MRI) and one session of sensorimotor rhythm (SMR, 12–15 Hz) based NF training. Individuals who reported a high frequency of prayer showed improved NF performance compared to individuals who reported a low frequency of prayer. The individual ability to control one’s own brain activity was related to volumetric aspects of the brain. In the low frequency of prayer group, gray matter volumes in the right insula and inferior frontal gyrus were positively associated with NF performance, supporting prior findings that more general self-control networks are involved in successful NF learning. In contrast, participants who prayed regularly showed a negative association between gray matter volume in the left medial orbitofrontal cortex (Brodmann’s area (BA) 10) and NF performance. Due to their regular spiritual practice, they might have been more skillful in gating incoming information provided by the NF system and avoiding task-irrelevant thoughts
Sequential effects in continued visual search: Using fixation-related potentials to compare distractor processing before and after target detection
To search for a target in a complex environment is an everyday behavior that ends with finding the target. When we search for two identical targets, however, we must continue the search after finding the first target and memorize its location. We used fixation-related potentials to investigate the neural correlates of different stages of the search, that is, before and after finding the first target. Having found the first target influenced subsequent distractor processing. Compared to distractor fixations before the first target fixation, a negative shift was observed for three subsequent distractor fixations. These results suggest that processing a target in continued search modulates the brain's response, either transiently by reflecting temporary working memory processes or permanently by reflecting working memory retention
The Influence of verbalization on the pattern of cortical activation during mental arithmetic
<p>Abstract</p> <p>Background</p> <p>The aim of the present functional magnetic resonance imaging (fMRI) study at 3 T was to investigate the influence of the verbal-visual cognitive style on cerebral activation patterns during mental arithmetic. In the domain of arithmetic, a visual style might for example mean to visualize numbers and (intermediate) results, and a verbal style might mean, that numbers and (intermediate) results are verbally repeated. In this study, we investigated, first, whether verbalizers show activations in areas for language processing, and whether visualizers show activations in areas for visual processing during mental arithmetic. Some researchers have proposed that the left and right intraparietal sulcus (IPS), and the left angular gyrus (AG), two areas involved in number processing, show some domain or modality specificity. That is, verbal for the left AG, and visual for the left and right IPS. We investigated, second, whether the activation in these areas implied in number processing depended on an individual's cognitive style.</p> <p>Methods</p> <p>42 young healthy adults participated in the fMRI study. The study comprised two functional sessions. In the first session, subtraction and multiplication problems were presented in an event-related design, and in the second functional session, multiplications were presented in two formats, as Arabic numerals and as written number words, in an event-related design. The individual's habitual use of visualization and verbalization during mental arithmetic was assessed by a short self-report assessment.</p> <p>Results</p> <p>We observed in both functional sessions that the use of verbalization predicts activation in brain areas associated with language (supramarginal gyrus) and auditory processing (Heschl's gyrus, Rolandic operculum). However, we found no modulation of activation in the left AG as a function of verbalization.</p> <p>Conclusions</p> <p>Our results confirm that strong verbalizers use mental speech as a form of mental imagination more strongly than weak verbalizers. Moreover, our results suggest that the left AG has no specific affinity to the verbal domain and subserves number processing in a modality-general way.</p
Brisk heart rate and EEG changes during execution and withholding of cue-paced foot motor imagery
Cue-paced motor imagery (MI) is a frequently used mental strategy to realize a Brain-Computer Interface (BCI). Recently it has been reported that two MI tasks can be separated with a high accuracy within the first second after cue presentation onset. To investigate this phenomenon in detail we studied the dynamics of motor cortex beta oscillations in EEG and the changes in heart rate (HR) during visual cue-paced foot MI using a go (execution of imagery) vs. nogo (withholding of imagery) paradigm in 16 healthy subjects. Both execution and withholding of MI resulted in a brisk centrally localized beta event-related desynchronization (ERD) with a maximum at ~400 ms and a concomitant HR deceleration. We found that response patterns within the first second after stimulation differed between conditions. The ERD was significantly larger in go as compared to nogo. In contrast the HR deceleration was somewhat smaller and followed by an acceleration in go as compared to nogo. These findings suggest that the early beta ERD reflects visually induced preparatory activity in motor cortex networks. Both the early beta ERD and the HR deceleration are the result of automatic operating processes that are likely part of the orienting reflex (OR). Of interest, however, is that the preparatory cortical activity is strengthened and the HR modulated already within the first second after stimulation during the execution of MI. The subtraction of the HR time course of the nogo from the go condition revealed a slight HR acceleration in the first seconds most likely due to the increased mental effort associated with the imagery process
Does Feedback Design Matter? A Neurofeedback Study Comparing Immersive Virtual Reality and Traditional Training Screens in Elderly
Neurofeedback (NF) is a Brain-Computer Interface (BCI) application, in which the brain activity is fed back to the user in real-time enabling voluntary brain control. In this context, the significance of the feedback design is mainly unexplored. Highly immersive feedback scenarios using virtual reality (VR) technique are available. However, their effects on subjective user experience as well as on objective outcome measures remain open. In the present article, we discuss the general pros and cons of using VR as feedback modality in BCI applications. Furthermore, we report on the results of an empirical study, in which the effects of traditional two-dimensional and three-dimensional VR based feedback scenarios on NF training performance and user experience in healthy older individuals and neurologic patients were compared. In conclusion, we suggest indications and contraindications of immersive VR feedback designs in BCI applications. Our results show that findings in healthy individuals are not always transferable to patient populations having an impact on serious game and feedback design
- …