17,429 research outputs found
Laser-velocimeter flow-field measurements of an advanced turboprop
Non-intrusive measurements of velocity about a spinner-propeller-nacelle configuration at a Mach number of 0.8 were performed. A laser velocimeter, specifically developed for these measurements in the NASA Lewis 8-foot by 6-foot Supersonic Wind Tunnel, was used to measure the flow-field of the advanced swept SR-3 turboprop. The laser velocimeter uses an argon ion laser and a 2-color optics system to allow simultaneous measurements of 2-components of velocity. The axisymmetric nature of the propeller-nacelle flow-field permits two separate 2 dimensonal measurements to be combined into 3 dimensional velocity data. Presented are data ahead of and behind the prop blades and also a limited set in between the blades. Aspects of the observed flow-field such as the tip vortex are discussed
Translation termination depends on the sequential ribosomal entry of eRF1 and eRF3.
Translation termination requires eRF1 and eRF3 for polypeptide-and tRNA-release on stop codons. Additionally, Dbp5/DDX19 and Rli1/ABCE1 are required; however, their function in this process is currently unknown. Using a combination of in vivo and in vitro experiments, we show that they regulate a stepwise assembly of the termination complex. Rli1 and eRF3-GDP associate with the ribosome first. Subsequently, Dbp5-ATP delivers eRF1 to the stop codon and in this way prevents a premature access of eRF3. Dbp5 dissociates upon placing eRF1 through ATP-hydrolysis. This in turn enables eRF1 to contact eRF3, as the binding of Dbp5 and eRF3 to eRF1 is mutually exclusive. Defects in the Dbp5-guided eRF1 delivery lead to premature contact and premature dissociation of eRF1 and eRF3 from the ribosome and to subsequent stop codon readthrough. Thus, the stepwise Dbp5-controlled termination complex assembly is essential for regular translation termination events. Our data furthermore suggest a possible role of Dbp5/DDX19 in alternative translation termination events, such as during stress response or in developmental processes, which classifies the helicase as a potential drug target for nonsense suppression therapy to treat cancer and neurodegenerative diseases
Evaluation of Bacillus thuringiensis Berliner as an alternative control of small hive beetles, Aethina tumida Murray (Coleoptera: Nitidulidae)
Small hive beetles, Aethina tumida Murray, are parasites and scavengers of honeybee colonies, Apis mellifera L., and have become an invasive species that can cause considerable damage in its new distribution areas. An effective subspecies of Bacillus thuringiensis Berliner (=Bt) would provide an alternative to chemical control of this pest. Therefore, we tested three different Bt strains [B. thuringiensis, var. aizawai (B401®), B. thuringiensis var. kurstaki (Novodor®) and B. thuringiensis var. San Diego tenebrionis (Jackpot®)] and Perizin® (3.2% coumaphos), each applied on combs with a pollen diet fed to pairs of adult beetles. This evaluates the products for the suppression of successful small hive beetle reproduction. While none of the tested Bt strains showed a significant effect on the number of produced wandering larvae, we could confirm the efficacy of coumaphos for the control of small hive beetles. We further show that it is also efficient when applied with a lower concentration as a liquid on the combs. We suggest the continued search for efficient Bt strains naturally infesting small hive beetles in its endemic and new ranges, which may become a part of the integrated management of this pest
Changes in chemical composition of N. sitophila during the active growth phase
Changes in chemical composition during growt
Magnetoconductance switching in an array of oval quantum dots
Employing oval shaped quantum billiards connected by quantum wires as the
building blocks of a linear quantum dot array, we calculate the ballistic
magnetoconductance in the linear response regime. Optimizing the geometry of
the billiards, we aim at a maximal finite- over zero-field ratio of the
magnetoconductance. This switching effect arises from a relative phase change
of scattering states in the oval quantum dot through the applied magnetic
field, which lifts a suppression of the transmission characteristic for a
certain range of geometry parameters. It is shown that a sustainable switching
ratio is reached for a very low field strength, which is multiplied by
connecting only a second dot to the single one. The impact of disorder is
addressed in the form of remote impurity scattering, which poses a temperature
dependent lower bound for the switching ratio, showing that this effect should
be readily observable in experiments.Comment: 11 pages, 8 figure
Decoherence and the retrieval of lost information
We found that in contrast with the common premise, a measurement on the
environment of an open quantum system can {\em reduce} its decoherence rate. We
demonstrate it by studying an example of indirect qubit's measurement, where
the information on its state is hidden in the environment. This information is
extracted by a distant device, coupled with the environment. We also show that
the reduction of decoherence generated by this device, is accompanied with
diminution of the environmental noise in a vicinity of the qubit. An
interpretation of these results in terms of quantum interference on large
scales is presented.Comment: 9 pages, 8 figures, additional explanations added, Phys. Rev. B, in
pres
A Bell pair in a generic random matrix environment
Two non-interacting qubits are coupled to an environment. Both coupling and
environment are represented by random matrix ensembles. The initial state of
the pair is a Bell state, though we also consider arbitrary pure states.
Decoherence of the pair is evaluated analytically in terms of purity; Monte
Carlo calculations confirm these results and also yield the concurrence of the
pair. Entanglement within the pair accelerates decoherence. Numerics display
the relation between concurrence and purity known for Werner states, allowing
us to give a formula for concurrence decay.Comment: 4 pages, 3 figure
Quantum coherence and entanglement induced by the continuum between distant localized states
It is demonstrated that two distant quantum wells separated by a reservoir
with a continuous spectrum can possess bound eigenstates embedded in the
continuum. These represent a linear superposition of quantum states localized
in the wells. We show that such a state can be isolated in the course of free
evolution from any initial state by a null-result measurement in the reservoir.
The latter might not be necessary in the many-body case. The resulting
superposition is regulated by ratio of couplings between the wells and the
reservoir. In particular, one can lock the system in one of the wells by
enhancing this ratio. By tuning parameters of the quantum wells, many-body
entangled states in distant wells can be produced through interactions and
statistics.Comment: small modifications, one reference is added, to appear in Phys. Rev.
- …