11 research outputs found

    Accommodating heterogeneous missing data patterns for prostate cancer risk prediction

    Full text link
    Objective: We compared six commonly used logistic regression methods for accommodating missing risk factor data from multiple heterogeneous cohorts, in which some cohorts do not collect some risk factors at all, and developed an online risk prediction tool that accommodates missing risk factors from the end-user. Study Design and Setting: Ten North American and European cohorts from the Prostate Biopsy Collaborative Group (PBCG) were used for fitting a risk prediction tool for clinically significant prostate cancer, defined as Gleason grade group greater or equal 2 on standard TRUS prostate biopsy. One large European PBCG cohort was withheld for external validation, where calibration-in-the-large (CIL), calibration curves, and area-underneath-the-receiver-operating characteristic curve (AUC) were evaluated. Ten-fold leave-one-cohort-internal validation further validated the optimal missing data approach. Results: Among 12,703 biopsies from 10 training cohorts, 3,597 (28%) had clinically significant prostate cancer, compared to 1,757 of 5,540 (32%) in the external validation cohort. In external validation, the available cases method that pooled individual patient data containing all risk factors input by an end-user had best CIL, under-predicting risks as percentages by 2.9% on average, and obtained an AUC of 75.7%. Imputation had the worst CIL (-13.3%). The available cases method was further validated as optimal in internal cross-validation and thus used for development of an online risk tool. For end-users of the risk tool, two risk factors were mandatory: serum prostate-specific antigen (PSA) and age, and ten were optional: digital rectal exam, prostate volume, prior negative biopsy, 5-alpha-reductase-inhibitor use, prior PSA screen, African ancestry, Hispanic ethnicity, first-degree prostate-, breast-, and second-degree prostate-cancer family history

    Rahmenkonzept der Hochschulen des Landes Baden-Württemberg für datenintensive Dienste – bwDATA Phase III (2020-2024)

    Get PDF
    Das zentrale Ziel von bwDATA in Phase III ist die optimale Unterstützung der Wissenschaft in den Belangen der Datenspeicherung und des nachhaltigen Forschungsdatenmanagements ebenso wie die Versorgung der Landeshochschulen mit auf ihre jeweiligen Belange und Bedürfnisse angepassten Speicherstrukturen und darauf basierenden Diensten. Dem Beispiel des bwHPC-Konzepts folgend werden hierbei enge Abstimmung, Kooperation und Arbeitsteilung zwischen den beteiligten Einrichtungen vertieft. Das vorliegende Rahmenkonzept soll dabei nicht als absoluter Leitfaden für die Periode 2020 bis 2024 dienen, es will vielmehr für die verschiedenen Bereiche der Wissenschaft, für Forschung, Lehre und Administration die Rahmenbedingungen für den koordinierten Aufbau und Betrieb speicherintensiver Dienste definieren. bwDATA basiert dabei auf einer gemeinsamen, strategischen Vorgehensweise aller Universitäten, Hochschulen der angewandten Wissenschaften, Pädagogischen Hochschulen, Kunst- und Musikhochschulen, der Dualen Hochschule Baden-Württembergs, der Landesbibliotheken und des Landesarchivs. Ein wesentliches Ziel von bwDATA Phase III ist der verbesserte Umgang mit großen wissenschaftlichen Datenmengen über den gesamten Data Life Cycle in der BaWü-Datenföderation und damit auch der verstärkte Aufbau des Forschungsdatenmanagements für die beteiligten wissenschaftlichen Einrichtungen bis hin zu Backup und Langzeitarchivierung. Das Rahmenkonzept bwDATA definiert die Möglichkeit, die Wissenschaft in den Teilgebieten Forschung, Lehre und Administration durch Verbessern vorhandener und Aufbau neuer Lösungen flexibel zu unterstützen

    Accommodating heterogeneous missing data patterns for prostate cancer risk prediction

    Full text link
    BACKGROUND We compared six commonly used logistic regression methods for accommodating missing risk factor data from multiple heterogeneous cohorts, in which some cohorts do not collect some risk factors at all, and developed an online risk prediction tool that accommodates missing risk factors from the end-user. METHODS Ten North American and European cohorts from the Prostate Biopsy Collaborative Group (PBCG) were used for fitting a risk prediction tool for clinically significant prostate cancer, defined as Gleason grade group ≥ 2 on standard TRUS prostate biopsy. One large European PBCG cohort was withheld for external validation, where calibration-in-the-large (CIL), calibration curves, and area-underneath-the-receiver-operating characteristic curve (AUC) were evaluated. Ten-fold leave-one-cohort-internal validation further validated the optimal missing data approach. RESULTS Among 12,703 biopsies from 10 training cohorts, 3,597 (28%) had clinically significant prostate cancer, compared to 1,757 of 5,540 (32%) in the external validation cohort. In external validation, the available cases method that pooled individual patient data containing all risk factors input by an end-user had best CIL, under-predicting risks as percentages by 2.9% on average, and obtained an AUC of 75.7%. Imputation had the worst CIL (-13.3%). The available cases method was further validated as optimal in internal cross-validation and thus used for development of an online risk tool. For end-users of the risk tool, two risk factors were mandatory: serum prostate-specific antigen (PSA) and age, and ten were optional: digital rectal exam, prostate volume, prior negative biopsy, 5-alpha-reductase-inhibitor use, prior PSA screen, African ancestry, Hispanic ethnicity, first-degree prostate-, breast-, and second-degree prostate-cancer family history. CONCLUSION Developers of clinical risk prediction tools should optimize use of available data and sources even in the presence of high amounts of missing data and offer options for users with missing risk factors

    Comprehensive measurement of pp-chain solar neutrinos with Borexino

    No full text
    corecore