84 research outputs found

    Perioperative Course and Socioeconomic Status Predict Long-Term Neurodevelopment Better Than Perioperative Conventional Neuroimaging in Children with Congenital Heart Disease.

    Get PDF
    The objective of the study was to compare the use of neonatal conventional brain magnetic resonance imaging (MRI) with that of clinical factors and socioeconomic status (SES) to predict long-term neurodevelopment in children with severe congenital heart disease (CHD). In this prospective cohort study, perioperative MRIs were acquired in 57 term-born infants with CHD undergoing cardiopulmonary bypass surgery during their first year of life. Total brain volume (TBV) was measured using an automated method. Brain injury severity (BIS) was assessed by an established scoring system. The neurodevelopmental outcome was assessed at 6 years using standardized test batteries. A multiple linear regression model was used for cognitive and motor outcomes with postoperative TBV, perioperative BIS, CHD complexity, length of hospital stay, and SES as covariates. CHD diagnoses included univentricular heart defect (n = 15), transposition of the great arteries (n = 33), and acyanotic CHD (n = 9). Perioperative moderate-to-severe brain injury was detected in 15 (26%) patients. The total IQ was similar to test norms (P = .11), whereas the total motor score (P < .001) was lower. Neither postoperative TBV nor perioperative BIS predicted the total IQ, but SES (P < .001) and longer hospital stay (P = .004) did. No factor predicted the motor outcome. Although the predictive value of neonatal conventional MRIs for long-term neurodevelopment is low, duration of hospital stay and SES better predict the outcome in this CHD sample. These findings should be considered in initiating early therapeutic support

    The Wnt pathway controls cell death engulfment, spindle orientation, and migration through CED-10/Rac

    Get PDF
    Wnt signalling pathways have extremely diverse functions in animals, including induction of cell fates or tumours, guidance of cell movements during gastrulation, and the induction of cell polarity. Wnt can induce polar changes in cellular morphology by a remodelling of the cytoskeleton. However, how activation of the Frizzled receptor induces cytoskeleton rearrangement is not well understood. We show, by an in depth 4-D microscopy analysis, that the Caenorhabditis elegans Wnt pathway signals to CED-10/Rac via two separate branches to regulate modulation of the cytoskeleton in different cellular situations. Apoptotic cell clearance and migration of the distal tip cell require the MOM-5/Fz receptor, GSK-3 kinase, and APC/APR-1, which activate the CED-2/5/12 branch of the engulfment machinery. MOM-5 (Frizzled) thus can function as an engulfment receptor in C. elegans. Our epistatic analyses also suggest that the two partially redundant signalling pathways defined earlier for engulfment may act in a single pathway in early embryos. By contrast, rearrangement of mitotic spindles requires the MOM-5/Fz receptor, GSK-3 kinase, and beta-catenins, but not the downstream factors LIT-1/NLK or POP-1/Tcf. Taken together, our results indicate that in multiple developmental processes, CED-10/Rac can link polar signals mediated by the Wnt pathway to rearrangements of the cytoskeleton

    Axon degeneration induces glial responses through Draper-TRAF4-JNK signalling

    Get PDF
    Draper/Ced-1/MEGF-10 is an engulfment receptor that promotes clearance of cellular debris in C. elegans, Drosophila and mammals. Draper signals through an evolutionarily conserved Src family kinase cascade to drive cytoskeletal rearrangements and target engulfment through Rac1. Glia also alter gene expression patterns in response to axonal injury but pathways mediating these responses are poorly defined. We show Draper is cell autonomously required for glial activation of transcriptional reporters after axonal injury. We identify TNF receptor associated factor 4 (TRAF4) as a novel Draper binding partner that is required for reporter activation and phagocytosis of axonal debris. TRAF4 and misshapen (MSN) act downstream of Draper to activate c-Jun N-terminal kinase (JNK) signalling in glia, resulting in changes in transcriptional reporters that are dependent on Drosophila AP-1 (dAP-1) and STAT92E. Our data argue injury signals received by Draper at the membrane are important regulators of downstream transcriptional responses in reactive glia

    Integrin α PAT-2/CDC-42 Signaling Is Required for Muscle-Mediated Clearance of Apoptotic Cells in Caenorhabditis elegans

    Get PDF
    Clearance of apoptotic cells by engulfment plays an important role in the homeostasis and development of multicellular organisms. Despite the fact that the recognition of apoptotic cells by engulfment receptors is critical in inducing the engulfment process, the molecular mechanisms are still poorly understood. Here, we characterize a novel cell corpse engulfment pathway mediated by the integrin α subunit PAT-2 in Caenorhabditis elegans and show that it specifically functions in muscle-mediated engulfment during embryogenesis. Inactivation of pat-2 results in a defect in apoptotic cell internalization. The PAT-2 extracellular region binds to the surface of apoptotic cells in vivo, and the intracellular region may mediate signaling for engulfment. We identify essential roles of small GTPase CDC-42 and its activator UIG-1, a guanine-nucleotide exchange factor, in PAT-2–mediated cell corpse removal. PAT-2 and CDC-42 both function in muscle cells for apoptotic cell removal and are co-localized in growing muscle pseudopods around apoptotic cells. Our data suggest that PAT-2 functions through UIG-1 for CDC-42 activation, which in turn leads to cytoskeletal rearrangement and apoptotic cell internalization by muscle cells. Moreover, in contrast to PAT-2, the other integrin α subunit INA-1 and the engulfment receptor CED-1, which signal through the conserved signaling molecules CED-5 (DOCK180)/CED-12 (ELMO) or CED-6 (GULP) respectively, preferentially act in epithelial cells to mediate cell corpse removal during mid-embryogenesis. Our results show that different engulfing cells utilize distinct repertoires of receptors for engulfment at the whole organism level

    A conserved myotubularin-related phosphatase regulates autophagy by maintaining autophagic flux

    Get PDF
    Macroautophagy (autophagy) targets cytoplasmic cargoes to the lysosome for degradation. Like all vesicle trafficking, autophagy relies on phosphoinositide identity, concentration, and localization to execute multiple steps in this catabolic process. Here, we screen for phosphoinositide phosphatases that influence autophagy in Drosophila and identify CG3530. CG3530 is homologous to the human MTMR6 subfamily of myotubularin-related 3-phosphatases, and therefore, we named it dMtmr6. dMtmr6, which is required for development and viability in Drosophila, functions as a regulator of autophagic flux in multiple Drosophila cell types. The MTMR6 family member MTMR8 has a similar function in autophagy of higher animal cells. Decreased dMtmr6 and MTMR8 function results in autophagic vesicle accumulation and influences endolysosomal homeostasis

    A Conserved Role for SNX9-Family Members in the Regulation of Phagosome Maturation during Engulfment of Apoptotic Cells

    Get PDF
    Clearance of apoptotic cells is of key importance during development, tissue homeostasis and wound healing in multi-cellular animals. Genetic studies in the nematode Caenorhabditis elegans have identified a set of genes involved in the early steps of cell clearance, in particular the recognition and internalization of apoptotic cells. A pathway that orchestrates the maturation of phagosomes containing ingested apoptotic cells in the worm has recently been described. However, many steps in this pathway remain elusive. Here we show that the C. elegans SNX9-family member LST-4 (lateral signaling target) and its closest mammalian orthologue SNX33 play an evolutionary conserved role during apoptotic cell corpse clearance. In lst-4 deficient worms, internalized apoptotic cells accumulated within non-acidified, DYN-1-positive but RAB-5-negative phagosomes. Genetically, we show that LST-4 functions at the same step as DYN-1 during corpse removal, upstream of the GTPase RAB-5. We further show that mammalian SNX33 rescue C. elegans lst-4 mutants and that overexpression of truncated SNX33 fragments interfered with phagosome maturation in a mammalian cell system. Taken together, our genetic and cell biological analyses suggest that LST-4 is recruited through a combined activity of DYN-1 and VPS-34 to the early phagosome membrane, where it cooperates with DYN-1 to promote recruitment/retention of RAB-5 on the early phagosomal membrane during cell corpse clearance. The functional conservation between LST-4 and SNX33 indicate that these early steps of apoptotic phagosome maturation are likely conserved through evolution

    6-OHDA-induced dopaminergic neurodegeneration in <i>Caenorhabditis elegans</i> is promoted by the engulfment pathway and inhibited by the transthyretin-related protein TTR-33

    Get PDF
    <div><p>Oxidative stress is linked to many pathological conditions including the loss of dopaminergic neurons in Parkinson’s disease. The vast majority of disease cases appear to be caused by a combination of genetic mutations and environmental factors. We screened for genes protecting <i>Caenorhabditis elegans</i> dopaminergic neurons from oxidative stress induced by the neurotoxin 6-hydroxydopamine (6-OHDA) and identified the <u>t</u>rans<u>t</u>hyretin-<u>r</u>elated gene <i>ttr-33</i>. The only described <i>C</i>. <i>elegans</i> transthyretin-related protein to date, TTR-52, has been shown to mediate corpse engulfment as well as axon repair. We demonstrate that TTR-52 and TTR-33 have distinct roles. TTR-33 is likely produced in the posterior arcade cells in the head of <i>C</i>. <i>elegans</i> larvae and is predicted to be a secreted protein. TTR-33 protects <i>C</i>. <i>elegans</i> from oxidative stress induced by paraquat or H<sub>2</sub>O<sub>2</sub> at an organismal level. The increased oxidative stress sensitivity of <i>ttr-33</i> mutants is alleviated by mutations affecting the KGB-1 MAPK kinase pathway, whereas it is enhanced by mutation of the JNK-1 MAPK kinase. Finally, we provide genetic evidence that the <i>C</i>. <i>elegans</i> cell corpse engulfment pathway is required for the degeneration of dopaminergic neurons after exposure to 6-OHDA. In summary, we describe a new neuroprotective mechanism and demonstrate that TTR-33 normally functions to protect dopaminergic neurons from oxidative stress-induced degeneration, potentially by acting as a secreted sensor or scavenger of oxidative stress.</p></div

    Defective Membrane Remodeling in Neuromuscular Diseases: Insights from Animal Models

    Get PDF
    Proteins involved in membrane remodeling play an essential role in a plethora of cell functions including endocytosis and intracellular transport. Defects in several of them lead to human diseases. Myotubularins, amphiphysins, and dynamins are all proteins implicated in membrane trafficking and/or remodeling. Mutations in myotubularin, amphiphysin 2 (BIN1), and dynamin 2 lead to different forms of centronuclear myopathy, while mutations in myotubularin-related proteins cause Charcot-Marie-Tooth neuropathies. In addition to centronuclear myopathy, dynamin 2 is also mutated in a dominant form of Charcot-Marie-Tooth neuropathy. While several proteins from these different families are implicated in similar diseases, mutations in close homologues or in the same protein in the case of dynamin 2 lead to diseases affecting different tissues. This suggests (1) a common molecular pathway underlying these different neuromuscular diseases, and (2) tissue-specific regulation of these proteins. This review discusses the pathophysiology of the related neuromuscular diseases on the basis of animal models developed for proteins of the myotubularin, amphiphysin, and dynamin families. A better understanding of the common mechanisms between these neuromuscular disorders will lead to more specific health care and therapeutic approaches

    Better Buildings

    Full text link
    corecore