107 research outputs found

    Ancient colonization of marginal habitats. A comparative analysis of case studies from the Ancient World

    Get PDF
    The present contribution deals with the concepts of marginal habitats in selected regions of the ancient world, ranging from modern Spain to the Jordanian desert and from Turkey to the Ethiopian highlands. Central to this research is the hypothesis that the occupation of areas beyond the ‘normal’ settlement patterns corresponds to colonization processes which reflect specific social strategies and may have stimulated the development of new technological skills. A review of ‘marginality’ research in various disciplines indicates that there is no comprehensive definition of the concept, which can be approached from a multitude of perspectives and with manifold objectives. A survey of the eight case studies and two more in-depth discussions of the sites of Musawwarat (Sudan) and Ayamonte (Spain) highlight the potentials as well as the limits of the archaeological investigation into past marginalities. Patterns of spatial marginalization are the easiest to detect. The studies also show that we must not limit our analysis to the adverse factors connected to different kinds of marginalities. Instead, our analyses suggest that spatially marginal areas were deliberately chosen for settlement – an integration with core-periphery approaches may help us to understand these scenarios, which have received little attention in ‘marginality’ research in archaeology or elsewhere so far

    Salvage radiotherapy for patients with PSA relapse after radical prostatectomy: a single institution experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the efficacy of salvage radiotherapy (RT) for persistent or rising PSA after radical prostatectomy and to determine prognostic factors identifying patients who may benefit from salvage RT.</p> <p>Methods</p> <p>Between 1990 and 2003, 59 patients underwent RT for PSA recurrence after radical prostatectomy. Patients received a median of 66 Gy to the prostate bed with 3D or 2D RT. The main end point was biochemical failure after salvage RT, defined as an increase of the serum PSA value >0.2 ng/ml confirmed by a second elevation.</p> <p>Results</p> <p>Median follow-up was 38 months. The 3-year and 5-year bDFS rates were 56.1% and 41.2% respectively. According to multivariate analysis, only preRT PSA ≥1 ng/ml was associated with biochemical relapse.</p> <p>Conclusion</p> <p>When delivered early, RT is an effective treatment after radical prostatectomy. Only preRT PSA ≥1 ng/ml predicted relapse.</p

    Fungal volatile organic compounds: emphasis on their plant growth-promoting

    Get PDF
    Fungal volatile organic compounds (VOCs) commonly formed bioactive interface between plants and countless of microorganisms on the above- and below-ground plant-fungus interactions. Fungal-plant interactions symbolize intriguingly biochemical complex and challenging scenarios that are discovered by metabolomic approaches. Remarkably secondary metabolites (SMs) played a significant role in the virulence and existence with plant-fungal pathogen interaction; only 25% of the fungal gene clusters have been functionally identified, even though these numbers are too low as compared with plant secondary metabolites. The current insights on fungal VOCs are conducted under lab environments and to apply small numbers of microbes; its molecules have significant effects on growth, development, and defense system of plants. Many fungal VOCs supported dynamic processes, leading to countless interactions between plants, antagonists, and mutualistic symbionts. The fundamental role of fungal VOCs at field level is required for better understanding, so more studies will offer further constructive scientific evidences that can show the cost-effectiveness of ecofriendly and ecologically produced fungal VOCs for crop welfare

    Stimulation of Chitin Synthesis Rescues Candida albicans from Echinocandins

    Get PDF
    Echinocandins are a new generation of novel antifungal agent that inhibit cell wall β(1,3)-glucan synthesis and are normally cidal for the human pathogen Candida albicans. Treatment of C. albicans with low levels of echinocandins stimulated chitin synthase (CHS) gene expression, increased Chs activity, elevated chitin content and reduced efficacy of these drugs. Elevation of chitin synthesis was mediated via the PKC, HOG, and Ca2+-calcineurin signalling pathways. Stimulation of Chs2p and Chs8p by activators of these pathways enabled cells to survive otherwise lethal concentrations of echinocandins, even in the absence of Chs3p and the normally essential Chs1p, which synthesize the chitinous septal ring and primary septum of the fungus. Under such conditions, a novel proximally offset septum was synthesized that restored the capacity for cell division, sustained the viability of the cell, and abrogated morphological and growth defects associated with echinocandin treatment and the chs mutations. These findings anticipate potential resistance mechanisms to echinocandins. However, echinocandins and chitin synthase inhibitors synergized strongly, highlighting the potential for combination therapies with greatly enhanced cidal activity

    Defining the Specificity of Cotranslationally Acting Chaperones by Systematic Analysis of mRNAs Associated with Ribosome-Nascent Chain Complexes

    Get PDF
    Polypeptides exiting the ribosome must fold and assemble in the crowded environment of the cell. Chaperones and other protein homeostasis factors interact with newly translated polypeptides to facilitate their folding and correct localization. Despite the extensive efforts, little is known about the specificity of the chaperones and other factors that bind nascent polypeptides. To address this question we present an approach that systematically identifies cotranslational chaperone substrates through the mRNAs associated with ribosome-nascent chain-chaperone complexes. We here focused on two Saccharomyces cerevisiae chaperones: the Signal Recognition Particle (SRP), which acts cotranslationally to target proteins to the ER, and the Nascent chain Associated Complex (NAC), whose function has been elusive. Our results provide new insights into SRP selectivity and reveal that NAC is a general cotranslational chaperone. We found surprising differential substrate specificity for the three subunits of NAC, which appear to recognize distinct features within nascent chains. Our results also revealed a partial overlap between the sets of nascent polypeptides that interact with NAC and SRP, respectively, and showed that NAC modulates SRP specificity and fidelity in vivo. These findings give us new insight into the dynamic interplay of chaperones acting on nascent chains. The strategy we used should be generally applicable to mapping the specificity, interplay, and dynamics of the cotranslational protein homeostasis network

    Biology and biotechnology of Trichoderma

    Get PDF
    Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications
    corecore