28 research outputs found

    Seminal lipid profiling and antioxidant capacity : a species comparison

    Get PDF
    On their way to the oocyte, sperm cells are subjected to oxidative stress, which may trigger the oxidation of phospholipids (PL). Applying MALDI-TOF MS, HPTLC and ESI-IT MS, we comparatively analyzed the PL compositions of semen and blood of species differing in their reproductive systems and types of nutrition (bull, boar, stallion, lion and man) with regard to the sensitivity to oxidation as well as the accumulation of harmful lyso-PL (LPL), transient products of lipid oxidation. In addition, the protective capacity of seminal fluid (SF) was also examined. The PL composition of erythrocytes and blood plasma is similar across the species, while pronounced differences exist for sperm and SF. Since the blood function is largely conserved across mammalian species, but the reproductive systems may vary in many aspects, the obtained results suggest that the PL composition is not determined by the type of nutrition, but by the relatedness of species and by functional requirements of cell membranes such as fluidity. Sperm motion and fertilization of oocytes require a rather flexible membrane, which is accomplished by significant moieties of unsaturated fatty acyl residues in sperm lipids of most species, but implies a higher risk of oxidation. Due to a high content of plasmalogens (alkenyl ether lipids), bull sperm are most susceptible to oxidation. Our data indicate that bull sperm possess the most effective protective power in SF. Obviously, a co-evolution of PL composition and protective mechanisms has occurred in semen and is related to the reproductive characteristics. Although the protective capacity in human SF seems well developed, we recorded the most pronounced individual contaminations with LPL in human semen. Probably, massive oxidative challenges related to lifestyle factors interfere with natural conditions.SUPPLEMENTARY MATERIAL: S1 Fig. ESI spectra of lysophosphatidylcholine (LPC) fractions from boar, bull, stallion, lion and human samples.S2 Fig. ESI spectra of sphingomyelin (SM) fractions from boar, bull, stallion, lion and human samples. Lipid extracts were separated on a normal phase high performance thin-layer chromatography (HPTLC) plate with chloroform/ethanol/water/triethylamine (30:35:7:35, by vol.) as the mobile phase. Plates were air-dried and stained with primuline (Direct Yellow 59, Sigma-Aldrich, Taufkirchen, Germany) (50 mg/l dissolved in acetone/water 80:20, by vol.). Lipids were made visible under UV light and marked with a pencil. SM fractions were directly analyzed by coupling a TLC plate reader to an ESI mass spectrometer. Mass spectra were recorded in the positive ion mode. For further details on ESI-IT MS see main text. For peak assignment, please see S2 Table. https://doi.org/10.1371/journal.pone.0264675.s002S3 Fig. ESI spectra of phosphatidylcholine (PC) fractions from boar, bull, stallion, lion and human samples. Lipid extracts were separated on a normal phase high performance thin-layer chromatography (HPTLC) plate with chloroform/ethanol/water/triethylamine (30:35:7:35, by vol.) as the mobile phase. Plates were air-dried and stained with primuline (Direct Yellow 59, Sigma-Aldrich, Taufkirchen, Germany) (50 mg/l dissolved in acetone/water 80:20, by vol.). Lipids were made visible under UV light and marked with a pencil. PC fractions were directly analyzed by coupling a TLC plate reader to an ESI mass spectrometer. Mass spectra were recorded in the positive ion mode. For further details on ESI-IT MS see main text. For peak assignment, please see S3 Table. https://doi.org/10.1371/journal.pone.0264675.s003S4 Fig. ESI spectra of phosphatidylinositol (PI) fractions from boar, bull, stallion and human lipid samples. Lipid extracts were separated on a normal phase high performance thin-layer chromatography (HPTLC) plate with chloroform/ethanol/water/triethylamine (30:35:7:35, by vol.) as the mobile phase. Plates were air-dried and stained with primuline (Direct Yellow 59, Sigma-Aldrich, Taufkirchen, Germany) (50 mg/l dissolved in acetone/water 80:20, by vol.). Lipids were made visible under UV light and marked with a pencil. PI fractions were directly analyzed by coupling a TLC plate reader to an ESI mass spectrometer. Mass spectra were recorded in the negative ion mode. For further details on ESI-IT MS see main text. For peak assignment, please see S4 Table. https://doi.org/10.1371/journal.pone.0264675.s004S5 Fig. ESI spectra of phosphatidylethanolamine (PE) fractions from boar, bull and stallion samples. Lipid extracts were separated on a normal phase high performance thin-layer chromatography (HPTLC) plate with chloroform/ethanol/water/triethylamine (30:35:7:35, by vol.) as the mobile phase. Plates were air-dried and stained with primuline (Direct Yellow 59, Sigma-Aldrich, Taufkirchen, Germany) (50 mg/l dissolved in acetone/water 80:20, by vol.). Lipids were made visible under UV light and marked with a pencil. PE fractions were directly analyzed by coupling a TLC plate reader to an ESI mass spectrometer. Mass spectra were recorded in the negative ion mode. For further details on ESI-IT MS see main text. For peak assignment, please see S5 Table. https://doi.org/10.1371/journal.pone.0264675.s005S6 Fig. ESI spectra of phosphatidylethanolamine (PE) fractions from lion and human samples. Lipid extracts were separated on a normal phase high performance thin-layer chromatography (HPTLC) plate with chloroform/ethanol/water/triethylamine (30:35:7:35, by vol.) as the mobile phase. Plates were air-dried and stained with primuline (Direct Yellow 59, Sigma-Aldrich, Taufkirchen, Germany) (50 mg/l dissolved in acetone/water 80:20, by vol.). Lipids were made visible under UV light and marked with a pencil. PE fractions were directly analyzed by coupling a TLC plate reader to an ESI mass spectrometer. Mass spectra were recorded in the negative ion mode. For further details on ESI-IT MS see main text. For peak assignment, please see S5 Table. https://doi.org/10.1371/journal.pone.0264675.s006S7 Fig. Hydrolysis of selected seminal fluid samples over time. The plots of hydrolysis measurements from boar and stallion seminal fluid were fitted by a linear curve (f(x) = a + b×x) and the plots from bull, lion and human were fitted by an exponential growth to a maximum (f(x) = a×e-b×x). Due to these different courses of the hydrolysis reaction between the species, the absolute hydrolysis at a given time point (10 min) was used to compare the mean values of the investigated individuals between the species (see Table 2 of the main text). https://doi.org/10.1371/journal.pone.0264675.s007S8 Fig. Effect of artificial LPC on boar sperm. Beltsville Thawing Solution (BTS, Minitüb GmbH)-diluted boar semen (20 × 106 sperm/ml) was mixed with 20 μM lysophosphatidylcholine (LPC 16:0, Avanti Polar Lipids®, No 855675C). After incubation at 38°C for 30 min, the ratios of total motility (blank boxes) and sperm with an intact acrosome (striped boxes) were analyzed. The lipid extract of washed sperm of this experiment was analyzed by MALDI-TOF MS and the ratio of LPC to total GPC was calculated (for details see Material and Methods of the main text). Incubation with 20 μM LPC led to 2.4 ± 3.6% inserted LPC in sperm cell membranes. Significant differences in total motility and the percentage of sperm with an intact acrosome between the incubation with 20 μM LPC and controls are marked by asterisks (P = 0.006 and 0.003, respectively, Wilcoxon signed-rank test, n = 11). https://doi.org/10.1371/journal.pone.0264675.s008S9 Fig. Original TLC pictures. Lipid extracts were separated on normal phase high performance thin-layer chromatography (HPTLC) plates with chloroform/ethanol/water/triethylamine (30:35:7:35, by vol.) as the mobile phase. Plates were air-dried and stained with primuline (Direct Yellow 59, Sigma-Aldrich, Taufkirchen, Germany) (50 mg/l dissolved in acetone/water 80:20, by vol.). BP–blood plasma, SF–seminal fluid, st.–lipid standard mixture made of LPC16:0, SM16:0, PC16:0/18:1, PA 16:0/18:1, PI 16:1/18:1, PE 16:0/18:1, PG 16:0/18:1 (bottom up). https://doi.org/10.1371/journal.pone.0264675.s009S1 Table. Assignment of signals detected in ESI spectra from lysophosphatidylcholine (LPC) spots. https://doi.org/10.1371/journal.pone.0264675.s010S2 Table. Assignment of signals detected in ESI spectra from sphingomyelin (SM) spots. n.a.—not assigned. https://doi.org/10.1371/journal.pone.0264675.s011S3 Table. Assignment of signals detected in ESI spectra from phosphatidylcholine (PC) spots. https://doi.org/10.1371/journal.pone.0264675.s012S4 Table. Assignment of signals detected in ESI spectra from phosphatidylinositol (PI) spots. https://doi.org/10.1371/journal.pone.0264675.s013S5 Table. Assignment of signals detected in ESI spectra from phosphatidylethanolamine (PE) spots. https://doi.org/10.1371/journal.pone.0264675.s014The German Research Council.http://www.plosone.orgdm2022Veterinary Tropical Disease

    Effects of different freezing protocols on motility, viability, mitochondrial membrane potential, intracellular calcium level, and DNA integrity of cryopreserved equine epididymal sperm

    Full text link
    The aim of the present study was to evaluate the effect of different freezing procedures on sperm motion, viability, the acrosome status, mitochondrial membrane potential (MMP), intracellular calcium content, and DNA integrity on epididymal stallion sperm. Therefore, the sperm of 10 healthy stallions was harvested by retrograde flushing after testectomy, diluted with a semen extender containing defined milk proteins and a freezing extender containing egg yolk and glycerol and frozen according to 4 different protocols, using a programmable freezer and a floating rack performing a slow (processes 1 and 2) or a fast cooling rate (processes 3 and 4, respectively). Post-thaw total motility and slow sperm values were lower when using process 4 compared with processes 1 and 2 (P < .05) after 1 hour of incubation. Progressive motility was lower in process 4 compared with process 1 immediately after thawing and after 1 hour of incubation (P < .05). The amount of rapid sperm was lower when using process 4 compared with process 1 immediately after thawing (P < .05). After 1 hour of incubation, the amount of rapid sperm was lower when using process 4 compared with processes 1 and 2 (P < .05). Higher values for viable sperm were seen in processes 1 and 2 compared with process 4 (P < .05) after 1 hour of incubation. Immediately after thawing, more viable sperm with high MMP (hMMP) were observed when using process 3 compared with process 2 (P < .05). After 1 hour of incubation, a significantly higher amount of viable hMMP sperm were detected when using processes 1 and 2 compared with process 4 (P < .05). Process 2 yielded a lower percentage of sperm containing low calcium (lCa) than process 3 immediately after thawing (P < .05). After 1 hour of incubation, the lowest amount of lCa sperm was observed using process 4 (P < .05). The subpopulation of viable/hMMP/lCa sperm was higher when using process 3 compared with process 2 immediately after thawing (P < .05). After 1 hour of incubation, the lowest amount of this subpopulation was detected in process 4 (P < .05). The DNA integrity was similar in all groups. In conclusion, a slow cooling rate with a controlled rate freezer resulted in best sperm quality after thawing. Using a floating rack in nitrogen vapor as an alternative to a programmable freezer, equilibration in a cooled environment is advantageous

    Comparison of the effects of five semen extenders on the quality of frozen-thawed equine epididymal sperm

    Full text link
    Cryopreservation of epididymal sperm allows the saving of genetic material in case of unexpected death or emergency castration. The aim of the present study was the comparison of five different combinations of extenders commercially available for equine frozen semen processing for cryopreservation of epididymal sperm. Epididymal sperm were harvested from gonads of 10 healthy stallions after routine castration by retrograde flush technique. Then, samples were split and diluted with (1) INRA96 + INRA Freeze, (2) BotuSemen + BotuCRIO, (3) EquiPlus + Gent Freeze, (4) EquiPlus + EquiPlus Freeze, and (5) Gent + Gent Freeze. Extenders 1 and 2 showed higher values for total and progressive motility after thawing compared with extender 4 (P .05), and extender 5 resulted in the lowest values (P < .05). The subpopulation of viable frozen-thawed sperm with high mitochondrial membrane potential and low intracellular calcium content was higher using extender 1 compared with extenders 3, 4, and 5 (P < .05) and higher in extender 2 compared with extenders 4 and 5 immediately after thawing (P < .05). After 1 hour of incubation, this subpopulation yielded the highest values in extender 2 (P < .05). Immediately after thawing, extender 1 yielded higher values for percentage of DFI and mean DFI than extenders 3, 4, and 5 (P < .05). Following 1 hour of incubation after thawing, sperm processed with extender 1 resulted in the highest values for percentage of DFI and mean DFI (P < .05). Using extender 2, mean DFI values were lower than those in extender 1 and higher than the extenders 3, 4, and 5 (P < .05). The study revealed that according to the examined sperm quality parameters, freezing extenders (extender 1, extender 2) using low concentrations of glycerol either combined with or without methylformamide were beneficial for cryopreservation of stallion epididymal sperm. For processing of stallion epididymal sperm, an extender containing milk proteins (extenders 1-4) for initial dilution after sperm harvesting is preferable to an extender including egg yolk (extender 5)

    Fertility and 63,X mosaicism in a Haflinger Sibship

    Full text link
    Chromosomal abnormalities are notable causes of infertility in horses. Mares show various degrees of estrous behavior, and ultrasound examination often reveals an underdeveloped genital tract. This article reports investigations on fertility in a Haflinger sibship with a healthy, normally developed, fertile mare with at least three healthy offspring. Chromosomal analysis performed incidentally and blinded for this mare revealed 63,X/64,XX/65,XXX mosaicism. Two closely related mares were also mosaics (63,X/64,XX), and one of them was a carrier of a marker chromosome. Repeated examinations of the mare and seven relatives (four mares and three stallions) did not provide evidence for sub- or in-fertility. They had no developmental abnormalities or conspicuous body conditions. Peripheral blood samples were collected for analysis of the karyotype and molecular analyses. Chromosomes were Giemsa stained and 4',6-diamidino-2-phenylindole banded to identify numerical or structural aberrations of chromosomes and identification of sex chromosomes, respectively. Fluorescence in situ hybridization was performed with an equine Y-chromosome painting probe to identify and count the sex chromosomes, and polymerase chain reaction analysis was used to test for the presence of the SRY gene and investigating chimerism. The present article demonstrates the necessity of further studies analyzing chromosomal X0 mosaics to improve the predictive value of chromosomal aberrations on fertility

    Disorder of sexual development in a mare with an unusual tentative mosaic karyotype (63,X/64,XYdel)

    Full text link
    The present report describes a 4-year-old Trakehner mare which was referred to the clinic for a breeding soundness evaluation. Clinical, histological, and postmortem examination revealed an underdeveloped genital tract, the absence of a cervix uteri, and small inactive ovaries without male gonadal tissue. Blood lymphocyte analysis revealed an unusual mosaic karyotype consisting of 2 cell lines. For the majority of cells (70%), monosomy X (63,X) was observed. The remaining cells (30%) contained 64 chromosomes including one X chromosome and a small rudimentary Y chromosome consisting mostly of heterochromatin. The centromere was retained, but its full functionality was questionable. PCR analysis revealed that the entire male-specific region of Y (Yq14), including the SRY gene, was deleted. It remained unclear if the pseudoautosomal region (Yq15) and parts of the heterochromatic region (Yq13) were affected by this deletion. The phenotype of the mare with this disorder of sex development associated with sex chromosome abnormalities is genetically comparable to 63,X monosomy which fully explains the clinical findings

    Disorder of Sexual Development in a Mare with an Unusual Tentative Mosaic Karyotype: 63,X/64,Xdel(Y).

    No full text
    The present report describes a 4-year-old Trakehner mare which was referred to the clinic for a breeding soundness evaluation. Clinical, histological, and postmortem examination revealed an underdeveloped genital tract, the absence of a cervix uteri, and small inactive ovaries without male gonadal tissue. Blood lymphocyte analysis revealed an unusual mosaic karyotype consisting of 2 cell lines. For the majority of cells (70%), monosomy X (63,X) was observed. The remaining cells (30%) contained 64 chromosomes including one X chromosome and a small rudimentary Y chromosome consisting mostly of heterochromatin. The centromere was retained, but its full functionality was questionable. PCR analysis revealed that the entire male-specific region of Y (Yq14), including the SRY gene, was deleted. It remained unclear if the pseudoautosomal region (Yq15) and parts of the heterochromatic region (Yq13) were affected by this deletion. The phenotype of the mare with this disorder of sex development associated with sex chromosome abnormalities is genetically comparable to 63,X monosomy which fully explains the clinical findings

    Fertility and 63,X Mosaicism in a Haflinger Sibship.

    No full text
    Chromosomal abnormalities are notable causes of infertility in horses. Mares show various degrees of estrous behavior, and ultrasound examination often reveals an underdeveloped genital tract. This article reports investigations on fertility in a Haflinger sibship with a healthy, normally developed, fertile mare with at least three healthy offspring. Chromosomal analysis performed incidentally and blinded for this mare revealed 63,X/64,XX/65,XXX mosaicism. Two closely related mares were also mosaics (63,X/64,XX), and one of them was a carrier of a marker chromosome. Repeated examinations of the mare and seven relatives (four mares and three stallions) did not provide evidence for sub- or in-fertility. They had no developmental abnormalities or conspicuous body conditions. Peripheral blood samples were collected for analysis of the karyotype and molecular analyses. Chromosomes were Giemsa stained and 4',6-diamidino-2-phenylindole banded to identify numerical or structural aberrations of chromosomes and identification of sex chromosomes, respectively. Fluorescence in situ hybridization was performed with an equine Y-chromosome painting probe to identify and count the sex chromosomes, and polymerase chain reaction analysis was used to test for the presence of the SRY gene and investigating chimerism. The present article demonstrates the necessity of further studies analyzing chromosomal X0 mosaics to improve the predictive value of chromosomal aberrations on fertility

    Elder (Sambucus nigra), identified by high-content screening, counteracts foam cell formation without promoting hepatic lipogenesis

    No full text
    Abstract Cholesterol deposition in intimal macrophages leads to foam cell formation and atherosclerosis. Reverse cholesterol transport (RCT), initiated by efflux of excess cholesterol from foam cells, counteracts atherosclerosis. However, targeting RCT by enhancing cholesterol efflux was so far accompanied by adverse hepatic lipogenesis. Here, we aimed to identify novel natural enhancers of macrophage cholesterol efflux suitable for the prevention of atherosclerosis. Plant extracts of an open-access library were screened for their capacity to increase cholesterol efflux in RAW264.7 macrophages trace-labeled with fluorescent BODIPY-cholesterol. Incremental functional validation of hits yielded two final extracts, elder (Sambucus nigra) and bitter orange (Citrus aurantium L.) that induced ATP binding cassette transporter A1 (ABCA1) expression and reduced cholesteryl ester accumulation in aggregated LDL-induced foam cells. Aqueous elder extracts were subsequently prepared in-house and both, flower and leaf extracts increased ABCA1 mRNA and protein expression in human THP-1 macrophages, while lipogenic gene expression in hepatocyte-derived cells was not induced. Chlorogenic acid isomers and the quercetin glycoside rutin were identified as the main polyphenols in elder extracts with putative biological action. In summary, elder flower and leaf extracts increase macrophage ABCA1 expression and reduce foam cell formation without adversely affecting hepatic lipogenesis
    corecore