105 research outputs found
Pionic Degrees of Freedom in Atomic Nuclei and Quasielastic Knockout of Pions by High-Energy Electrons
The nonlinear model of pionic condensate in nuclei by G. Preparata can be
efficiently verified by investigation of the quasielastic knockout process of
pions out of nuclei by high energy electrons. First, a momentum distribution
(MD) of the collective pions has a bright maximum at q=0.3 Gev.Second the
excitation spectrum of a recoil nucleus is concentrated at low energies E
lesser than 1MeV. The results for the pion knockout from mesonic clouds of
individual nucleons are absolutely different. The latter results are presented
both for pion and rho-meson clouds localized on nucleons.Comment: 13 pages, 3 figure
Nucleon-nucleon wave function with short-range nodes and high-energy deuteron photodisintegration
We review a concept of the Moscow potential (MP) of the interaction. On
the basis of this concept we derive by quantum inversion optical partial
potentials from the modern partial-wave analysis (PWA) data and deuteron
properties. Point-form (PF) relativistic quantum mechanics (RQM) is applied to
the two-body deuteron photodisintegration. Calculations of the cross-section
angular distributions cover photon energies between 1.1 and 2.5 GeV. Good
agreement between our theory and recent experimental data confirms the concept
of deep attractive Moscow potential with forbidden - and -states.Comment: 31 pages, 9 figures. typos, extended formalism, review of the Moscow
potential model adde
Microscopics of meson degrees of freedom in nucleons and mesons in nuclei - what can be seen in the process of quasielastic knockout of mesons by high-energy electrons
Developed earlier concept of quasielastic knock out of pions from nucleons by
high-energy electrons is propounded as a tool for checking microscopical model
( - fluctuation) for decay of N to different channels and
Preparata model of nucleus structure.Comment: 6 pages, 5 figures, Talk given at 16 Baldin Symposium in June 200
KvazilastiÄno izbijanje mezona iz nukleona. Razvoj i buduÄnost
The electroproduction of pions and kaons at the kinematics of quasi-elastic knockout is a powerful tool for investigation of mesonic cloud. A model of scalar qqÂŻ ( 3P0) fluctuation in the non-trivial QCD vacuum is used to calculate pion and kaon momentum distributions in the channels NâB+Ï, B = N, â, Nâ , Nââ, and NâY + K, Y=Î, ÎŁ0.Elektrotvorba piona i kaona u uvjetima kvazielastiÄnog izbijanja je moÄna metoda za istraĆŸivanje elektronskog oblaka. Primijenili smo model skalarnih fluktuacija qqÂŻ ( 3P0) u netrivijalnom QCD vakuumu radi raÄunanja raspodjela impulsa piona i kaona u kanalima NâB+Ï, B = N, â, Nâ , Nââ, i NâY + K, Y=Î, ÎŁ0
Examination of the astrophysical S-factors of the radiative proton capture on 2H, 6Li, 7Li, 12C and 13C
Astrophysical S-factors of radiative capture reactions on light nuclei have
been calculated in a two-cluster potential model, taking into account the
separation of orbital states by the use of Young schemes. The local two-body
potentials describing the interaction of the clusters were determined by
fitting scattering data and properties of bound states. The many-body character
of the problem is approximatively accounted for by Pauli forbidden states. An
important feature of the approach is the consideration of the dependence of the
interaction potential between the clusters on the orbital Young schemes, which
determine the permutation symmetry of the nucleon system. Proton capture on 2H,
6Li, 7Li, 12C, and 13C was analyzed in this approach. Experimental data at low
energies were described reasonably well when the phase shifts for
cluster-cluster scattering, extracted from precise data, were used. This shows
that decreasing the experimental error on differential elastic scattering cross
sections of light nuclei at astrophysical energies is very important also to
allow a more accurate phase shift analysis. A future increase in precision will
allow more definite conclusions regarding the reaction mechanisms and
astrophysical conditions of thermonuclear reactions.Comment: 40p., 9 fig., 83 ref. arXiv admin note: substantial text overlap with
arXiv:1005.1794, arXiv:1112.1760, arXiv:1005.198
The Nucleon-Nucleon Interaction in a Chiral Constituent Quark Model
We study the short-range nucleon-nucleon interaction in a chiral constituent
quark model by diagonalizing a Hamiltonian comprising a linear confinement and
a Goldstone boson exchange interaction between quarks. The six-quark harmonic
oscillator basis contains up to two excitation quanta. We show that the highly
dominant configuration is due to its specific
flavour-spin symmetry. Using the Born-Oppenheimer approximation we find a
strong effective repulsion at zero separation between nucleons in both
and channels. The symmetry structure of the highly dominant
configuration implies the existence of a node in the S-wave relative motion
wave function at short distances. The amplitude of the oscillation of the wave
function at short range will be however strongly suppressed. We discuss the
mechanism leading to the effective short-range repulsion within the chiral
constituent quark model as compared to that related with the one-gluon exchange
interaction.Comment: 31 pages, LaTe
Multi-channel phase-equivalent transformation and supersymmetry
Phase-equivalent transformation of local interaction is generalized to the
multi-channel case. Generally, the transformation does not change the number of
the bound states in the system and their energies. However, with a special
choice of the parameters, the transformation removes one of the bound states
and is equivalent to the multi-channel supersymmetry transformation recently
suggested by Sparenberg and Baye. Using the transformation, it is also possible
to add a bound state to the discrete spectrum of the system at a given energy
if the angular momentum at least in one of the coupled channels .Comment: 9 pages, revtex; to be published in Phys. At. Nucl. (Oct. 2000
- âŠ