1,991 research outputs found
Handling Homographs in Neural Machine Translation
Homographs, words with different meanings but the same surface form, have
long caused difficulty for machine translation systems, as it is difficult to
select the correct translation based on the context. However, with the advent
of neural machine translation (NMT) systems, which can theoretically take into
account global sentential context, one may hypothesize that this problem has
been alleviated. In this paper, we first provide empirical evidence that
existing NMT systems in fact still have significant problems in properly
translating ambiguous words. We then proceed to describe methods, inspired by
the word sense disambiguation literature, that model the context of the input
word with context-aware word embeddings that help to differentiate the word
sense be- fore feeding it into the encoder. Experiments on three language pairs
demonstrate that such models improve the performance of NMT systems both in
terms of BLEU score and in the accuracy of translating homographs.Comment: NAACL201
Learning Language Representations for Typology Prediction
One central mystery of neural NLP is what neural models "know" about their
subject matter. When a neural machine translation system learns to translate
from one language to another, does it learn the syntax or semantics of the
languages? Can this knowledge be extracted from the system to fill holes in
human scientific knowledge? Existing typological databases contain relatively
full feature specifications for only a few hundred languages. Exploiting the
existence of parallel texts in more than a thousand languages, we build a
massive many-to-one neural machine translation (NMT) system from 1017 languages
into English, and use this to predict information missing from typological
databases. Experiments show that the proposed method is able to infer not only
syntactic, but also phonological and phonetic inventory features, and improves
over a baseline that has access to information about the languages' geographic
and phylogenetic neighbors.Comment: EMNLP 201
- …
