402 research outputs found

    In-Plane Focusing of Terahertz Surface Waves on a Gradient Index Metamaterial Film

    Full text link
    We designed and implemented a gradient index metasurface for the in-plane focusing of confined terahertz surface waves. We measured the spatial propagation of the surface waves by two-dimensional mapping of the complex electric field using a terahertz near-field spectroscope. The surface waves were focused to a diameter of 500 \micro m after a focal length of approx. 2 mm. In the focus, we measured a field amplitude enhancement of a factor of 3.Comment: 6 pages, 4 figure

    Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range

    Full text link
    We present a metamaterial-based terahertz (THz) sensor for thickness measurements of subwavelength-thin materials and refractometry of liquids and liquid mixtures. The sensor operates in reflection geometry and exploits the frequency shift of a sharp Fano resonance minimum in the presence of dielectric materials. We obtained a minimum thickness resolution of 12.5 nm (1/16000 times the wavelength of the THz radiation) and a refractive index sensitivity of 0.43 THz per refractive index unit. We support the experimental results by an analytical model that describes the dependence of the resonance frequency on the sample material thickness and the refractive index.Comment: 10 pages, 5 figure

    Deep Learning Based Classification of Pedestrian Vulnerability Trained on Synthetic Datasets

    Get PDF
    The reliable detection of vulnerable road users and the assessment of the actual vulnerability is an important task for the collision warning algorithms of driver assistance systems. Current systems make assumptions about the road geometry which can lead to misclassification. We propose a deep learning-based approach to reliably detect pedestrians and classify their vulnerability based on the traffic area they are walking in. Since there are no pre-labeled datasets available for this task, we developed a method to train a network first on custom synthetic data and then use the network to augment a customer-provided training dataset for a neural network working on real world images. The evaluation shows that our network is able to accurately classify the vulnerability of pedestrians in complex real world scenarios without making assumptions on road geometry

    Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?

    Get PDF
    For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods

    IMILAST: a community effort to intercompare extratropical cyclone detection and tracking algorithms

    Get PDF
    The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of weak cyclones, and distribution in some densely populated regions. Consistency between methods is better for strong cyclones than for shallow ones. Two case studies of relatively large, intense cyclones reveal that the identification of the most intense part of the life cycle of these events is robust between methods, but considerable differences exist during the development and the dissolution phases

    Airships: A New Horizon for Science

    Get PDF
    The "Airships: A New Horizon for Science" study at the Keck Institute for Space Studies investigated the potential of a variety of airships currently operable or under development to serve as observatories and science instrumentation platforms for a range of space, atmospheric, and Earth science. The participants represent a diverse cross-section of the aerospace sector, NASA, and academia. Over the last two decades, there has been wide interest in developing a high altitude, stratospheric lighter-than-air (LTA) airship that could maneuver and remain in a desired geographic position (i.e., "station-keeping") for weeks, months or even years. Our study found considerable scientific value in both low altitude (< 40 kft) and high altitude (> 60 kft) airships across a wide spectrum of space, atmospheric, and Earth science programs. Over the course of the study period, we identified stratospheric tethered aerostats as a viable alternative to airships where station-keeping was valued over maneuverability. By opening up the sky and Earth's stratospheric horizon in affordable ways with long-term flexibility, airships allow us to push technology and science forward in a project-rich environment that complements existing space observatories as well as aircraft and high-altitude balloon missions.Comment: This low resolution version of the report is 8.6 MB. For the high resolution version see: http://kiss.caltech.edu/study/airship

    Predicting solar cell performance from terahertz and microwave spectroscopy

    Get PDF
    Mobilities and lifetimes of photogenerated charge carriers are core properties of photovoltaic materials and can both be characterized by contactless terahertz or microwave measurements. Here, the expertise from fifteen laboratories is combined to quantitatively model the current-voltage characteristics of a solar cell from such measurements. To this end, the impact of measurement conditions, alternate interpretations, and experimental inter-laboratory variations are discussed using a (Cs,FA,MA)Pb(I,Br)3 halide perovskite thin-film as a case study. At 1 sun equivalent excitation, neither transport nor recombination is significantly affected by exciton formation or trapping. Terahertz, microwave, and photoluminescence transients for the neat material yield consistent effective lifetimes implying a resistance-free JV-curve with a potential power conversion efficiency of 24.6 %. For grainsizes above ≈20 nm, intra-grain charge transport is characterized by terahertz sum mobilities of ≈32 cm2 V−1 s−1. Drift-diffusion simulations indicate that these intra-grain mobilities can slightly reduce the fill factor of perovskite solar cells to 0.82, in accordance with the best-realized devices in the literature. Beyond perovskites, this work can guide a highly predictive characterization of any emerging semiconductor for photovoltaic or photoelectrochemical energy conversion. A best practice for the interpretation of terahertz and microwave measurements on photovoltaic materials is presented

    Measurement of t(t)over-bar normalised multi-differential cross sections in pp collisions at root s=13 TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

    Get PDF
    Peer reviewe

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| &lt; 0.03 at 95% confidence level. [Figure not available: see fulltext.
    corecore