15,577 research outputs found
Initial behavioural and attitudinal responses to influenza A, H1N1 ('swine flu')
Copyright © 2010 by the BMJ Publishing Group Ltd. All rights reserved.This study was sponsored by Canadian Institute of Health Research (CIHR), and
supported by the Community Coalition Concerned about SARS and other community organisations in the great Toronto area
Coulomb's law modification driven by a logarithmic electrodynamics
We examine physical aspects for the electric version of a recently proposed
logarithmic electrodynamics, for which the electric field of a point-like
charge is finite at the origin. It is shown that this electrodynamics displays
the vacuum birefringence phenomenon in the presence of external magnetic field.
Afterwards we compute the lowest-order modification to the interaction energy
by means of the gauge-invariant but path-dependent variables formalism. These
are shown to result in a long-range (-type) correction, in addition to a
linear and another logarithmic correction, to the Coulomb potential.Comment: 4 pages. arXiv admin note: text overlap with arXiv:1709.0386
How hole defects modify vortex dynamics in ferromagnetic nanodisks
Defects introduced in ferromagnetic nanodisks may deeply affect the structure
and dynamics of stable vortex-like magnetization. Here, analytical techniques
are used for studying, among other dynamical aspects, how a small cylindrical
cavity modify the oscillatory modes of the vortex. For instance, we have
realized that if the vortex is nucleated out from the hole its gyrotropic
frequencies are shifted below. Modifications become even more pronounced when
the vortex core is partially or completely captured by the hole. In these
cases, the gyrovector can be partially or completely suppressed, so that the
associated frequencies increase considerably, say, from some times to several
powers. Possible relevance of our results for understanding other aspects of
vortex dynamics in the presence of cavities and/or structural defects are also
discussed.Comment: 9 pages, 4 page
A 3-form Gauge Potential in 5D in connection with a Possible Dark Sector of 4D-Electrodynamics
We here propose a 5-dimensional {\bf Abelian gauge} model based on the mixing
between a potential and an Abelian 3-form field by means of a
topological mass term. An extended covariant derivative is introduced to
minimally couple a Dirac field to the potential, while this same
covariant derivative non-minimally couples the 3-form field to the charged
fermion. A number of properties are discussed in 5D; in particular, the
appearance of a topological fermionic current. A 4-dimensional reduced version
of the model is investigated and, { \bf in addition to the electric- and
magnetic-sort of fields,} there emerges an extra set of electric- and
magnetic-like fields which contribute a negative pressure and may be identified
as a possible fraction of dark energy. The role of the topological fermionic
current is also contemplated upon dimensional reduction from 5D to 4D. Other
issues we present in 4 space-time dimensions are the emergence {\bf of a
pseudo-scalar massive particle,} an extra massive neutral gauge boson,{\bf
which we interpret as a kind of paraphoton}, and the calculation of spin- and
velocity-dependent interparticle potentials associated to the exchange of the
intermediate bosonic fields of the model.Comment: -- 30 pages -- L. P. R. Ospedal appears as a new co-author;
modifications by inclusion of the gravitational sector and the attainment of
a spin- and velocity-dependent potential as an application have been worked
out in this Revised Versio
N=2-Maxwell-Chern-Simons model with anomalous magnetic moment coupling via dimensional reduction
An N=1--supersymmetric version of the Cremmer-Scherk-Kalb-Ramond model with
non-minimal coupling to matter is built up both in terms of superfields and in
a component-field formalism. By adopting a dimensional reduction procedure, the
N=2--D=3 counterpart of the model comes out, with two main features: a genuine
(diagonal) Chern-Simons term and an anomalous magnetic moment coupling between
matter and the gauge potential.Comment: 15 pages, Latex; one reference corrected; To be published in the Int.
J. Mod. Phys.
- …