17,984 research outputs found

    Interplay between disorder, quantum and thermal fluctuations in ferromagnetic alloys: The case of UCu2Si(2-x)Ge(x)

    Full text link
    We consider, theoretically and experimentally, the effects of structural disorder, quantum and thermal fluctuations in the magnetic and transport properties of certain ferromagnetic alloys.We study the particular case of UCu2Si(2-x)Ge(x). The low temperature resistivity, rho(T,x), exhibits Fermi liquid (FL) behavior as a function of temperature T for all values of x, which can be interpreted as a result of the magnetic scattering of the conduction electrons from the localized U spins. The residual resistivity, rho(0,x), follows the behavior of a disordered binary alloy. The observed non-monotonic dependence of the Curie temperature, Tc(x), with x can be explained within a model of localized spins interacting with an electronic bath whose transport properties cross-over from ballistic to diffusive regimes. Our results clearly show that the Curie temperature of certain alloys can be enhanced due to the interplay between quantum and thermal fluctuations with disorder.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    On Dirac-like Monopoles in a Lorentz- and CPT-violating Electrodynamics

    Get PDF
    We study magnetic monopoles in a Lorentz- and CPT-odd electrodynamical framework in (3+1) dimensions. This is the standard Maxwell model extended by means of a Chern-Simons-like term, bμF~μνAνb_\mu\tilde{F}^{\mu\nu}A_\nu (bμb_\mu constant), which respects gauge invariance but violates both Lorentz and CPT symmetries (as a consequence, duality is also lost). Our main interest concerns the analysis of the model in the presence of Dirac monopoles, so that the Bianchi identity no longer holds, which naively yields the non-conservation of electric charge. Since gauge symmetry is respected, the issue of charge conservation is more involved. Actually, the inconsistency may be circumvented, if we assume that the appearance of a monopole induces an extra electric current. The reduction of the model to (2+1) dimensions in the presence of both the magnetic sources and Lorentz-violating terms is presented. There, a quantization condition involving the scalar remnant of bμb_\mu, say, the mass parameter, is obtained. We also point out that the breaking of duality may be associated with an asymmetry between electric and magnetic sources in this background, so that the electromagnetic force experienced by a magnetic pole is supplemented by an extra term proportional to bμb_\mu, whenever compared to the one acting on an electric charge.Comment: 10 pages, no figures, typed in te
    • …
    corecore