16,175 research outputs found
A Note in the Skyrme Model with Higher Derivative Terms
Another stabilizer term is used in the classical Hamiltonian of the Skyrme
Model that permits in a much simple way the generalization of the higher-order
terms in the pion derivative field. Improved numerical results are obtained.Comment: Latex. Figure not include; available upon request. 7 pages, report
On the relation between the propagators of dual theories
In this paper, we show that the propagator of the dual of a general
Proca-like theory, derived from the gauging iterative Noether Dualization
Method, can be written by means of a simple relation between known propagators.
This result is also a demonstration that the Lagrangian obtained by dualization
describes the same physical particles as the ones present in the original
theory at the expense of introducing new non-physical (ghosts) excitations.Comment: latex, 4 page
Theory of Spin Fluctuations in Striped Phases of Doped Antiferromagnetic Cuprates
We study the properties of generalized striped phases of doped cuprate planar
quantum antiferromagnets. We invoke an effective, spatially anisotropic,
non-linear sigma model in two space dimensions. Our theoretical predictions are
in quantitative agreement with recent experiments in La_{2-x}Sr_xCuO_4 with . We focus on (i) the magnetic correlation length, (ii) the
staggered magnetization at and (iii) the N\'eel temperature, as functions
of doping, using parameters determined previously and independently for this
system. These results support the proposal that the low doping
(antiferromagnetic) phase of the cuprates has a striped configuration.Comment: 4 pages, Revtex. To appear in the Proceedings of the International
Conference "Stripes, Lattice Instabilities and High Tc Superconductivity",
(Rome, Dec. 1996
Interplay between disorder, quantum and thermal fluctuations in ferromagnetic alloys: The case of UCu2Si(2-x)Ge(x)
We consider, theoretically and experimentally, the effects of structural
disorder, quantum and thermal fluctuations in the magnetic and transport
properties of certain ferromagnetic alloys.We study the particular case of
UCu2Si(2-x)Ge(x). The low temperature resistivity, rho(T,x), exhibits Fermi
liquid (FL) behavior as a function of temperature T for all values of x, which
can be interpreted as a result of the magnetic scattering of the conduction
electrons from the localized U spins. The residual resistivity, rho(0,x),
follows the behavior of a disordered binary alloy. The observed non-monotonic
dependence of the Curie temperature, Tc(x), with x can be explained within a
model of localized spins interacting with an electronic bath whose transport
properties cross-over from ballistic to diffusive regimes. Our results clearly
show that the Curie temperature of certain alloys can be enhanced due to the
interplay between quantum and thermal fluctuations with disorder.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let
Probing the two-scale-factor universality hypothesis by exact rotation symmetry-breaking mechanism
We probe the two-scale factor universality hypothesis by evaluating, firstly
explicitly and analytically at the one-loop order, the loop quantum corrections
to the amplitude ratios for O() scalar field theories with
rotation symmetry-breaking in three distinct and independent methods in which
the rotation symmetry-breaking mechanism is treated exactly. We show that the
rotation symmetry-breaking amplitude ratios turn out to be identical in the
three methods and equal to their respective rotation symmetry-breaking ones,
although the amplitudes themselves, in general, depend on the method employed
and on the rotation symmetry-breaking parameter. At the end, we show that all
these results can be generalized, through an inductive process based on a
general theorem emerging from the exact calculation, to any loop level and
physically interpreted based on symmetry ideas.Comment: 17 pages, 3 figure
Gauging the SU(2) Skyrme model
In this paper the SU(2) Skyrme model will be reformulated as a gauge theory
and the hidden symmetry will be investigated and explored in the energy
spectrum computation. To this end we purpose a new constraint conversion
scheme, based on the symplectic framework with the introduction of Wess-Zumino
(WZ) terms in an unambiguous way. It is a positive feature not present on the
BFFT constraint conversion. The Dirac's procedure for the first-class
constraints is employed to quantize this gauge invariant nonlinear system and
the energy spectrum is computed. The finding out shows the power of the
symplectic gauge-invariant formalism when compared with another constraint
conversion procedures present on the literature.Comment: revised version, to appear in Phys.Rev.
- …