49 research outputs found

    High molecular weight polystyrene particles by cationic miniemulsion polymerization catalyzed by an iron-containing imidazolium-based ionic liquid

    Get PDF
    Cationic styrene polymerizations in aqueous media were conducted using the miniemulsion polymerization technique with the ionic liquid 1-N-butyl-3-N-methylimidazolium heptachloro diferrate (BMI.Fe2Cl7) as catalyst, hexadecyltrimethylammonium bromide (CTAB) as surfactant and hexadecane as costabilizer. The ionic liquid was effective to initiate styrene miniemulsion polymerization at a BMI.Fe2Cl7:styrene molar ratios as low as 1:1000. Increasing the reaction temperature from 70 °C to 90 °C led to an increase in both, conversion and molecular weight. And polystyrene with much higher molecular weight (viscosity average molecular weights of up to 2231 kDa) than those usually obtained in cationic polymerizations was produced. Furthermore, while particle sizes remained almost constant around 150 nm during polymerizations, an almost linear increase of conversion with reaction time was observed. In addition, molecular weight increased steadily with conversion approaching the behavior of living cationic polymerization. Please click Additional Files below to see the full abstrac

    Synthesis and biological investigation of (+)-JD1, an organometallic BET bromodomain inhibitor

    Get PDF
    (+)-JD1, a rationally designed ferrocene analogue of the BET bromodomain (BRD) probe molecule (+)-JQ1, has been synthesized and evaluated in biophysical, cell-based assays as well as in pharmacokinetic studies. It displays nanomolar activity against BRD isoforms, and its cocrystal structure was determined in complex with the first bromodomain of BRD4 and compared with that of (+)-JQ1, a known BRD4 small-molecule probe. At 1 μM concentration, (+)-JD1 was able to inhibit c-Myc, a key driver in cancer and an indirect target of BRD4

    Catalytic Approaches to Multicomponent Reactions: A Critical Review and Perspectives on the Roles of Catalysis

    No full text
    In this review, we comprehensively describe catalyzed multicomponent reactions (MCRs) and the multiple roles of catalysis combined with key parameters to perform these transformations. Besides improving yields and shortening reaction times, catalysis is vital to achieving greener protocols and to furthering the MCR field of research. Considering that MCRs typically have two or more possible reaction pathways to explain the transformation, catalysis is essential for selecting a reaction route and avoiding byproduct formation. Key parameters, such as temperature, catalyst amounts and reagent quantities, were analyzed. Solvent effects, which are likely the most neglected topic in MCRs, as well as their combined roles with catalysis, are critically discussed. Stereocontrolled MCRs, rarely observed without the presence of a catalytic system, are also presented and discussed in this review. Perspectives on the use of catalytic systems for improved and greener MCRs are finally presented

    In Melting Points We Trust: A Review on the Misguiding Characterization of Multicomponent Reactions Adducts and Intermediates

    No full text
    We discuss herein the problems associated with using melting points to characterize multicomponent reactions’ (MCRs) products and intermediates. Although surprising, it is not rare to find articles in which these MCRs final adducts (or their intermediates) are characterized solely by comparing melting points with those available from other reports. A brief survey among specialized articles highlights serious and obvious problems with this practice since, for instance, cases are found in which as many as 25 quite contrasting melting points have been attributed to the very same MCR adduct. Indeed, it seems logical to assume that the inherent non-confirmatory nature of melting points could be vastly misleading as a protocol for structural confirmation, but still many publications (also in the Q1 and Q2 quartiles) insist on using it. This procedure contradicts best practices in organic synthesis, and articles fraught with limitations and misleading conclusions have been published in the MCRs field. The drawbacks inherent to this practice are indeed serious and have misguided MCRs advances. We therefore suggest some precautions aimed at avoiding future confusions

    CATALYZED AND NON-CATALYZED SYNTHESIS OF BIOACTIVE MONASTROL

    No full text
    The bioactive 3,4-dihydropyrimidin-2(1H)-thione derivative known as Monastrol was synthesized under catalyzed and non-catalyzed conditions through the Biginelli multicomponent reaction under solvent-free conditions. The use of two Lewis acids (FeCl3 and CuCl2) and two Brønsted acids (HCl and CF3COOH) as catalysts improved the reaction yields of the transformation compared with the non-catalyzed reaction. The experiments investigated catalysis and its role, the importance of multicomponent reactions and their green features, and the application of these concepts to the synthesis of a biologically important structure
    corecore