18 research outputs found

    Gene-environment interactions in chronic obstructive pulmonary disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is one of the leading causes of death throughout the world and is largely associated with cigarette smoking. Despite the appreciation of the central role of smoking in the development of COPD, only a relatively small number of smokers (15%–20%) develop COPD. Recent studies depicting familial aggregation suggest that some subjects may have a genetic predisposition to developing COPD. In this respect, a number of single nucleotide polymorphisms have been reported in association with different COPD features (subphenotypes), although much of this data remains controversial. Classical genetic studies (including twin and family studies) assume an “equal-environment” scenario, but as gene-environment interactions occur in COPD, this assumption needs revision. Thus, new integrated models are needed to examine the major environmental factors associated with COPD which include smoking as well as air pollution, and respiratory infections, and not only genetic predisposition. Revisiting this area, may help answer the question of what has more bearing in the pathogenesis of COPD—the environment or the genomic sequence of the affected subjects. It is anticipated that an improved understanding of this interaction will both enable improved identification of individuals susceptible to developing this disease, as well as improved future treatments for this disease

    Smoking and Idiopathic Pulmonary Fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology with considerable morbidity and mortality. Cigarette smoking is one of the most recognized risk factors for development of IPF. Furthermore, recent work suggests that smoking may have a detrimental effect on survival of patients with IPF. The mechanism by which smoking may contribute to the pathogenesis of IPF is largely unknown. However, accumulating evidence suggests that increased oxidative stress might promote disease progression in IPF patients who are current and former smokers. In this review, potential mechanisms by which cigarette smoking affects IPF, the effects of cigarette smoking on accelerated loss of lung function in patients with IPF, key genetic studies evaluating the potential candidate genes and gene-environment (smoking) interaction, diagnosis, and treatment with emphasis on recently closed and ongoing clinical trials are presented

    A phase 1 study evaluating the pharmacokinetics, safety and tolerability of repeat dosing with a human IL-13 antibody (CAT-354) in subjects with asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>IL-13 has been implicated in the development of airway inflammation and hyperresponsiveness. This study investigated the multiple-dose pharmacokinetics and safety profile of human anti-IL-13 antibody (CAT-354) in adults with asthma.</p> <p>Methods</p> <p>This was a multiple-dose, randomised, double-blind, placebo-controlled phase 1 study in asthmatics (forced expiratory volume in 1 second [FEV<sub>1</sub>] ≥ 80% predicted). Subjects were randomised to receive three intravenous infusions of CAT-354 (1 mg/kg, 5 mg/kg or 10 mg/kg) or placebo at 28-day intervals. Blood samples were taken for pharmacokinetic measurements. Safety was assessed by adverse events, vital signs, ECGs, laboratory and pulmonary function parameters.</p> <p>Results</p> <p>Twenty-three subjects (aged 21-60 years, FEV<sub>1 </sub>88-95% predicted) received ≥ 1 dose of study medication. The half-life of CAT-354 was 12-17 days and was dose-independent. The maximum serum concentration and area under the curve were dose-dependent. Clearance (2.2-2.6 mL/day/kg) and volume of distribution (44-57 mL/kg) were both low and dose-independent. The observed maximum serum concentration after each dose increased slightly from dose 1 through dose 3 at all dose levels, consistent with an accumulation ratio of 1.4 to 1.7 for area under the curve. Most adverse events were deemed mild to moderate and unrelated to study medication. One SAE was reported and deemed unrelated to study drug. There were no effects of clinical concern for vital signs, ECG, laboratory or pulmonary parameters.</p> <p>Conclusions</p> <p>CAT-354 exhibited linear pharmacokinetics and an acceptable safety profile. These findings suggest that at the doses tested, CAT-354 can be safely administered in multiple doses to patients with asthma.</p> <p>Trial registration</p> <p>NCT00974675.</p

    Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a humanized anti-interleukin-9 monoclonal antibody, in two randomized phase 2a studies in subjects with asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interleukin-9 (IL-9)-targeted therapies may offer a novel approach for treating asthmatics. Two randomized placebo-controlled studies were conducted to assess the safety profile and potential efficacy of multiple subcutaneous doses of MEDI-528, a humanized anti-IL-9 monoclonal antibody, in asthmatics.</p> <p>Methods</p> <p>Study 1: adults (18-65 years) with mild asthma received MEDI-528 (0.3, 1, 3 mg/kg) or placebo subcutaneously twice weekly for 4 weeks. Study 2: adults (18-50 years) with stable, mild to moderate asthma and exercise-induced bronchoconstriction received 50 mg MEDI-528 or placebo subcutaneously twice weekly for 4 weeks. Adverse events (AEs), pharmacokinetics (PK), immunogenicity, asthma control (including asthma exacerbations), and exercise challenge test were evaluated in study 1, study 2, or both.</p> <p>Results</p> <p>In study 1 (N = 36), MEDI-528 showed linear serum PK; no anti-MEDI-528 antibodies were detected. Asthma control: 1/27 MEDI-528-treated subjects had 1 asthma exacerbation, and 2/9 placebo-treated subjects had a total of 4 asthma exacerbations (one considered a serious AE). In study 2, MEDI-528 (n = 7) elicited a trend in the reduction in mean maximum decrease in FEV<sub>1 </sub>post-exercise compared to placebo (n = 2) (-6.49% MEDI-528 vs -12.60% placebo; -1.40% vs -20.10%; -5.04% vs -15.20% at study days 28, 56, and 150, respectively). Study 2 was halted prematurely due to a serious AE in an asymptomatic MEDI-528-treated subject who had an abnormal brain magnetic resonance imaging that was found to be an artifact on further evaluation.</p> <p>Conclusions</p> <p>In these studies, MEDI-528 showed an acceptable safety profile and findings suggestive of clinical activity that support continued study in subjects with mild to moderate asthma.</p> <p>Trial registration</p> <p>ClinicalTrials (NCT): <a href="http://www.clinicaltrials.gov/ct2/show/NCT00507130">NCT00507130</a> and ClinicalTrials (NCT): <a href="http://www.clinicaltrials.gov/ct2/show/NCT00590720">NCT00590720</a></p

    Smoking and Idiopathic Pulmonary Fibrosis

    No full text
    Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology with considerable morbidity and mortality. Cigarette smoking is one of the most recognized risk factors for development of IPF. Furthermore, recent work suggests that smoking may have a detrimental effect on survival of patients with IPF. The mechanism by which smoking may contribute to the pathogenesis of IPF is largely unknown. However, accumulating evidence suggests that increased oxidative stress might promote disease progression in IPF patients who are current and former smokers. In this review, potential mechanisms by which cigarette smoking affects IPF, the effects of cigarette smoking on accelerated loss of lung function in patients with IPF, key genetic studies evaluating the potential candidate genes and gene-environment (smoking) interaction, diagnosis, and treatment with emphasis on recently closed and ongoing clinical trials are presented

    Phase 2, randomised placebo-controlled trial to evaluate the efficacy and safety of an anti-GM-CSF antibody (KB003) in patients with inadequately controlled asthma

    No full text
    OBJECTIVES: We wished to evaluate the effects of an antigranulocyte-macrophage colony-stimulating factor monoclonal antibody (KB003) on forced expiratory volume in 1 s (FEV(1)), asthma control and asthma exacerbations in adult asthmatics inadequately controlled by long-acting bronchodilators and inhaled/oral corticosteroids. SETTINGS: 47 ambulatory asthma care centres globally. PRIMARY OUTCOME MEASURES: Change in FEV(1) at week 24. PARTICIPANTS: 311 were screened, 160 were randomised and 129 completed the study. INTERVENTIONS: 7 intravenous infusions of either 400 mg KB003 or placebo at baseline and weeks 2, 4, 8, 12, 16 and 20. PRIMARY AND SECONDARY OUTCOME MEASURES: FEV(1) at week 24, asthma control, exacerbation rates and safety in all participants as well as prespecified subgroups. MAIN RESULTS: In the KB003 treated group, FEV(1) at week 24 improved to 118 mL compared with 54 mL in the placebo group (p=0.224). However, FEV(1) improved to 253 vs 26 mL at week 24 (p=0.02) in eosinophilic asthmatics (defined as >300 peripheral blood eosinophils/mL at baseline) and comparable improvements were seen at weeks 20 (p=0.034) and 24 (p=0.077) in patients with FEV(1) reversibility ≥20% at baseline and at weeks 4 (p=0.029), 16 (p=0.018) and 20 (p=0.006) in patients with prebronchodilator FEV(1) ≤50% predicted at baseline. There were no effects on asthma control or exacerbation rates. The most frequent adverse events in the KB003 group were rhinosinusitis and headache. There was no significant difference in antidrug antibody response between placebo and treated groups. There were no excess infections or changes in biomarkers known to be associated with the development of pulmonary alveolar proteinosis. CONCLUSIONS: Higher doses and/or further asthma phenotyping may be required in future studies with KB003. TRIAL REGISTRATION NUMBER: NCT01603277; Results
    corecore