735 research outputs found

    Boundary conditions at spatial infinity for fields in Casimir calculations

    Full text link
    The importance of imposing proper boundary conditions for fields at spatial infinity in the Casimir calculations is elucidated.Comment: 8 pages, 1 figure, submitted to the Proceedings of The Seventh Workshop QFEXT'05 (Barcelona, September 5-9, 2005

    Skyrme-Random-Phase-Approximation description of E1 strength in 92-100Mo

    Full text link
    The isovector dipole E1 strength in Mo isotopes with A=92,94,96,98,100 is analyzed within the self-consistent separable random-phase approximation (SRPA) model with Skyrme forces SkT6, SkM*, SLy6, and SkI3. The special attention is paid to the low-energy region near the particle thresholds (4-12 MeV), which is important for understanding of astrophysical processes. We show that, due to a compensation effect, the influence of nuclear deformation on E1 strength below 10-12 MeV is quite modest. At the same time, in agreement with previous predictions, the deformation increases the strength at higher energy. At 4-8 MeV the strength is mainly determined by the tail of E1 giant resonance. The four Skyrme forces differ in description of the whole giant resonance but give rather similar results below 12 MeV.Comment: 12 pages, 7 figures, to be published in Int. J. Mod. Phys. (E) as contribution to Proceedings of 15th Nuclear Physics Workshop (Kazimierz, Poland, 2008

    New analytic running coupling in QCD: higher loop levels

    Get PDF
    The properties of the new analytic running coupling are investigated at the higher loop levels. The expression for this invariant charge, independent of the normalization point, is obtained by invoking the asymptotic freedom condition. It is shown that at any loop level the relevant β\beta function has the universal behaviors at small and large values of the invariant charge. Due to this feature the new analytic running coupling possesses the universal asymptotics both in the ultraviolet and infrared regions irrespective of the loop level. The consistency of the model considered with the general definition of the QCD invariant charge is shown.Comment: LaTeX 2.09, 12 pages with 5 EPS figures, uses mpla1.sty; enlarged version is accepted for publication in Mod. Phys. Lett.

    TDDFT with Skyrme Forces: Effect of Time-Odd Densities on Electric Giant Resonances

    Full text link
    Time-odd densities and their effect on electric giant resonances are investigated within the self-consistent separable random-phase-approximation (SRPA) model for various Skyrme forces (SkT6, SkO, SkM*, SIII, SGII, SLy4, SLy6, SkI3). Time-odd densities restore Galilean invariance of the Skyrme functional, violated by the effective-mass and spin-orbital terms. In even-even nuclei these densities do not contribute to the ground state but can affect the dynamics. As a particular case, we explore the role of the current density in description of isovector E1 and isoscalar E2 giant resonances in a chain of Nd spherical and deformed isotopes with A=134-158. Relation of the current to the effective masses and relevant parameters of the Skyrme functional is analyzed. It is shown that current contribution to E1 and E2 resonances is generally essential and fully determined by the values and signs of the isovector and isoscalar effective-mass parameters of the force. The contribution is the same for all the isotope chain, i.e. for both standard and exotic nuclei.Comment: 14 pages, 7 figures, will be published in Proceed. of 14th Nuclear Physics Workshop (Kazimierez, Poland, September, 2007) Comment: latex error in openning Fig. 2 was correcte

    Self-Consistent Separable RPA For Density- and Current-Dependent Forces

    Get PDF
    Self-consistent factorization of two-body residual interaction is proposed for arbitrary density- and current-dependent energy functionals. Following this procedure, a separable RPA (SRPA) method is constructed. SRPA dramatically simplifies the calculations and demonstrates quick convergence to exact results. The method is tested for SkM* forces.Comment: 10 pages, 1 figure, contribution to Proceedings of 7th International Spring Seminar on Nuclear Physics, Maiori, Italy, May 27-31, 200

    Shock Wave Structure in a Strongly Nonlinear Granular Lattice with Viscous Dissipation

    Full text link
    The shock wave structure in a one-dimensional lattice (e.g. granular chain) with a power law dependence of force on displacement between particles with viscous dissipation is considered and compared to the corresponding long wave approximation. A dissipative term depending on the relative velocity between neighboring particles is included in the discrete model to investigate its influence on the shape of steady shock profiles. The critical viscosity coefficient is obtained from the long-wave approximation for arbitrary values of the exponent n and denotes the transition from an oscillatory to a monotonic shock profile in stronly nonlinear systems. The expression for the critical viscosity coefficient converges to the known equation for the critical viscosity in the weakly nonlinear case. Values of viscosity based on this expression are comparable to the values obtained in the numerical analysis of a discrete particle lattice with a Herzian contact interaction corresponding to n = 3/2. An initial disturbance in a discrete system approaches a stationary shock profile after traveling a short distance that is comparable to the width of the leading pulse of a stationary shock front. The shock front width is minimized when the viscosity is equal to its critical value.Comment: 20 pages, 6 figure

    How Hertzian solitary waves interact with boundaries in a 1-D granular medium

    Full text link
    We perform measurements, numerical simulations, and quantitative comparisons with available theory on solitary wave propagation in a linear chain of beads without static preconstrain. By designing a nonintrusive force sensor to measure the impulse as it propagates along the chain, we study the solitary wave reflection at a wall. We show that the main features of solitary wave reflection depend on wall mechanical properties. Since previous studies on solitary waves have been performed at walls without these considerations, our experiment provides a more reliable tool to characterize solitary wave propagation. We find, for the first time, precise quantitative agreements.Comment: Proof corrections, ReVTeX, 11 pages, 3 eps (Focus and related papers on http://www.supmeca.fr/perso/jobs/

    Solitary and shock waves in discrete double power-law materials

    Full text link
    A novel strongly nonlinear laminar metamaterial supporting new types of solitary and shock waves with impact energy mitigating capabilities is presented. It consists of steel plates with intermittent polymer toroidal rings acting as strongly nonlinear springs with large allowable strain. Their force-displacement relationship is described by the addition of two power-law relationships resulting in a solitary wave speed and width depending on the amplitude. This double nonlinearity allows splitting of an initial impulse into two separate strongly nonlinear solitary wave trains. Solitary and shock waves are observed experimentally and analyzed numerically in an assembly with Teflon o-rings.Comment: 14 pages, 6 figure

    Pairing and deformation effects in nuclear excitation spectra

    Full text link
    We investigate effects of pairing and of quadrupole deformation on two sorts of nuclear excitations,γ\gamma-vibrational Kπ=2+K^{\pi}=2^+ states and dipole resonances (isovector dipole, pygmy, compression, toroidal). The analysis is performed within the quasiparticle random-phase approximation (QRPA) based on the Skyrme energy functional using the Skyrme parametrization SLy6. Particular attention is paid to i) the role of the particle-particle (pp) channel in the residual interaction of QRPA, ii) comparison of volume pairing (VP) and surface pairing (SP), iii) peculiarities of deformation splitting in the various resonances. We find that the impact of the pp-channel on the considered excitations is negligible. This conclusion applies also to any other excitation except for the Kπ=0+K^{\pi}=0^+ states. Furthermore, the difference between VP and SP is found small (with exception of peak height in the toroidal mode). In the low-energy isovector dipole (pygmy) and isoscalar toroidal modes, the branch Kπ=1K^{\pi}=1^- is shown to dominate over Kπ=0K^{\pi}=0^- one in the range of excitation energy E<E < 8--10 MeV. The effect becomes impressive for the toroidal resonance whose low-energy part is concentrated in a high peak of almost pure Kπ=1K^{\pi}=1^- nature. This peculiarity may be used as a fingerprint of the toroidal mode in future experiments. The interplay between pygmy, toroidal and compression resonances is discussed, the interpretation of the observed isoscalar giant dipole resonance is partly revised.Comment: 12 pages, 12 figure

    Momentum distribution in heavy deformed nuclei: role of effective mass

    Full text link
    The impact of nuclear deformation on the momentum distributions (MD) of occupied proton states in 238^{238}U is studied with a phenomenological Woods-Saxon (WS) shell model and the self-consistent Skyrme-Hartree-Fock (SHF) scheme. Four Skyrme parameterizations (SkT6, SkM*, SLy6, SkI3) with different effective masses are used. The calculations reveal significant deformation effects in the low-momentum domain of Kπ=1/2±K^{\pi}=1/2^{\pm} states, mainly of those lying near the Fermi surface. For other states, the deformation effect on MD is rather small and may be neglected. The most remarkable result is that the very different Skyrme parameterizations and the WS potential give about identical MD. This means that the value of effective mass, being crucial for the description of the spectra, is not important for the spatial shape of the wave functions and thus for the MD. In general, it seems that, for the description of MD at 0k3000\le k \le 300 MeV/c, one may use any single-particle scheme (phenomenological or self-consistent) fitted properly to the global ground state properties.Comment: 14 pages, 6 figure
    corecore