923 research outputs found

    Anomalous wave reflection from the interface of two strongly nonlinear granular media

    Get PDF
    Granular materials exhibit a strongly nonlinear behaviour affecting the propagation of information in the medium. Dynamically self-organized strongly nonlinear solitary waves are the main information carriers in granular chains. Here we report the first experimental observation of the dramatic change of reflectivity from the interface of two granular media triggered by a noncontact magnetically induced initial precompression. It may be appropriate to name this phenomenon the "acoustic diode" effect. Based on numerical simulations, we explain this effect by the high gradient of particle velocity near the interface.Comment: 14 pages, 3 figure

    Transport of the repulsive Bose-Einstein condensate in a double-well trap: interaction impact and relation to Josephson effect

    Full text link
    Two aspects of the transport of the repulsive Bose-Einstein condensate (BEC) in a double-well trap are inspected: impact of the interatomic interaction and analogy to the Josephson effect. The analysis employs a numerical solution of 3D time-dependent Gross-Pitaevskii equation for a total order parameter covering all the trap. The population transfer is driven by a time-dependent shift of a barrier separating the left and right wells. Sharp and soft profiles of the barrier velocity are tested. Evolution of the relevant characteristics, involving phase differences and currents, is inspected. It is shown that the repulsive interaction substantially supports the transfer making it possible i) in a wide velocity interval and ii) three orders of magnitude faster than in the ideal BEC. The transport can be approximately treated as the d.c. Josephson effect. A dual origin of the critical barrier velocity (break of adiabatic following and d.c.-a.c. transition) is discussed. Following the calculations, robustness of the transport (d.c.) crucially depends on the interaction and barrier velocity profile. Only soft profiles which minimize undesirable dipole oscillations are acceptable.Comment: 10 pages, 8 figures, accepted by Laser Physis. arXiv admin note: text overlap with arXiv:1312.2750 The replaced version has a few corrections and additional reference

    Influence of Controlled Viscous Dissipation on the Propagation of Strongly Nonlinear Waves in Stainless Steel Based Phononic Crystals

    Get PDF
    Strongly nonlinear phononic crystals were assembled from stainless steel spheres. Single solitary waves and splitting of an initial pulse into a train of solitary waves were investigated in different viscous media using motor oil and non-aqueous glycerol to introduce a controlled viscous dissipation. Experimental results indicate that the presence of a viscous fluid dramatically altered the splitting of the initial pulse into a train of solitary waves. Numerical simulations qualitatively describe the observed phenomena only when a dissipative term based on the relative velocity between particles is introduced.Comment: 4 pages, 3 figures, conference pape

    Observation of two-wave structure in strongly nonlinear dissipative granular chains

    Full text link
    In a strongly nonlinear viscous granular chain under conditions of loading that exclude stationary waves (e.g., impact by a single grain) we observe a pulse that consists of two interconnected but distinct parts. One is a leading narrow "primary pulse" with properties similar to a solitary wave in a "sonic vacuum." It arises from strong nonlinearity and discreteness in the absence of dissipation, but now decays due to viscosity. The other is a broad, much more persistent shock-like "secondary pulse" trailing the primary pulse and caused by viscous dissipation. The medium behind the primary pulse is transformed from a "sonic vacuum" to a medium with finite sound speed. When the rapidly decaying primary pulse dies, the secondary pulse continues to propagate in the "sonic vacuum," with an oscillatory front if the viscosity is relatively small, until its eventual (but very slow) disintegration. Beyond a critical viscosity there is no separation of the two pulses, and the dissipation and nonlinearity dominate the shock-like attenuating pulse which now exhibits a nonoscillatory front

    Strongly nonlinear waves in a chain of Teflon beads

    Get PDF
    One dimensional "sonic vacuum" type phononic crystals were assembled from a chain of Teflon spheres with different diameters in a Teflon holder. It was demonstrated for the first time that this polymer-based "sonic vacuum", with exceptionally low elastic modulus of particles, supports propagation of strongly nonlinear solitary waves with a very low speed.Comment: 33 pages, 6 figure

    Solitary and shock waves in discrete double power-law materials

    Full text link
    A novel strongly nonlinear laminar metamaterial supporting new types of solitary and shock waves with impact energy mitigating capabilities is presented. It consists of steel plates with intermittent polymer toroidal rings acting as strongly nonlinear springs with large allowable strain. Their force-displacement relationship is described by the addition of two power-law relationships resulting in a solitary wave speed and width depending on the amplitude. This double nonlinearity allows splitting of an initial impulse into two separate strongly nonlinear solitary wave trains. Solitary and shock waves are observed experimentally and analyzed numerically in an assembly with Teflon o-rings.Comment: 14 pages, 6 figure

    Strongly Nonlinear Waves in Polymer Based Phononic Crystals

    Get PDF
    One dimensional "sonic vacuum"-type phononic crystals were assembled from chains of polytetrafluoroethylene (PTFE) beads and Parylene coated spheres with different diameters. It was demonstrated for the first time that these polymer-based granular system, with exceptionally low elastic modulus of particles, support the propagation of strongly nonlinear solitary waves with a very low speed. They can be described using classical nonlinear Hertz law despite the viscoelastic nature of the polymers and the high strain rate deformation of the contact area. Trains of strongly nonlinear solitary waves excited by an impact were investigated experimentally and were found to be in reasonable agreement with numerical calculations. Tunability of the signal shape and velocity was achieved through a non-contact magnetically induced precompression of the chains. This applied prestress allowed an increase of up to two times the solitary waves speed and significant delayed the signal splitting. Anomalous reflection at the interface of two "sonic vacua"-type systems was reported

    Energy trapping and shock disintegration in a composite granular medium

    Get PDF
    Granular materials demonstrate a strongly nonlinear behavior influencing the wave propagation in the medium. We report the first experimental observation of impulse energy confinement and the resultant disintegration of shock and solitary waves. The medium consists of alternating ensambles of high-modulus vs orders of magnitude lower modulus chains of different masses. The trapped energy is contained within the "softer" portions of the composite chain and is slowly released in the form of weak, separated pulses over an extended period of time. This effect is enhanced by using a specific group assembly and superimposed force.Comment: 15 pages, 2 figure

    Orbital Magnetic Dipole Mode in Deformed Clusters: A Fully Microscopic Analysis

    Get PDF
    The orbital M1 collective mode predicted for deformed clusters in a schematic model is studied in a self-consistent random-phase-approximation approach which fully exploits the shell structure of the clusters. The microscopic mechanism of the excitation is clarified and the close correlation with E2 mode established. The study shows that the M1 strength of the mode is fragmented over a large energy interval. In spite of that, the fraction remaining at low energy, well below the overwhelming dipole plasmon resonance, is comparable to the strength predicted in the schematic model. The importance of this result in view of future experiments is stressed.Comment: 10 pages, 3 Postscript figures, uses revte
    • …
    corecore