7 research outputs found
The IR-Completion of Gravity: What happens at Hubble Scales?
We have recently proposed an "Ultra-Strong" version of the Equivalence
Principle (EP) that is not satisfied by standard semiclassical gravity. In the
theory that we are conjecturing, the vacuum expectation value of the (bare)
energy momentum tensor is exactly the same as in flat space: quartically
divergent with the cut-off and with no spacetime dependent (subleading) ter ms.
The presence of such terms seems in fact related to some known difficulties,
such as the black hole information loss and the cosmological constant problem.
Since the terms that we want to get rid of are subleading in the high-momentum
expansion, we attempt to explore the conjectured theory by "IR-completing" GR.
We consider a scalar field in a flat FRW Universe and isolate the first
IR-correction to its Fourier modes operators that kills the quadratic (next to
leading) time dependent divergence of the stress energy tensor VEV. Analogously
to other modifications of field operators that have been proposed in the
literature (typically in the UV), the present approach seems to suggest a
breakdown (here, in the IR, at large distances) of the metric manifold
description. We show that corrections to GR are in fact very tiny, become
effective at distances comparable to the inverse curvature and do not contain
any adjustable parameter. Finally, we derive some cosmological implications. By
studying the consistency of the canonical commutation relations, we infer a
correction to the distance between two comoving observers, which grows as the
scale factor only when small compared to the Hubble length, but gets relevant
corrections otherwise. The corrections to cosmological distance measures are
also calculable and, for a spatially flat matter dominated Universe, go in the
direction of an effective positive acceleration.Comment: 27 pages, 2 figures. Final version, references adde
Minimal Scales from an Extended Hilbert Space
We consider an extension of the conventional quantum Heisenberg algebra,
assuming that coordinates as well as momenta fulfil nontrivial commutation
relations. As a consequence, a minimal length and a minimal mass scale are
implemented. Our commutators do not depend on positions and momenta and we
provide an extension of the coordinate coherent state approach to
Noncommutative Geometry. We explore, as toy model, the corresponding quantum
field theory in a (2+1)-dimensional spacetime. Then we investigate the more
realistic case of a (3+1)-dimensional spacetime, foliated into noncommutative
planes. As a result, we obtain propagators, which are finite in the ultraviolet
as well as the infrared regime.Comment: 16 pages, version which matches that published on CQ
UV stable, Lorentz-violating dark energy with transient phantom era
Phantom fields with negative kinetic energy are often plagued by the vacuum
quantum instability in the ultraviolet region. We present a Lorentz-violating
dark energy model free from this problem and show that the crossing of the
cosmological constant boundary w=-1 to the phantom equation of state is
realized before reaching a de Sitter attractor. Another interesting feature is
a peculiar time-dependence of the effective Newton's constant; the magnitude of
this effect is naturally small but may be close to experimental limits. We also
derive momentum scales of instabilities at which tachyons or ghosts appear in
the infrared region around the present Hubble scale and clarify the conditions
under which tachyonic instabilities do not spoil homogeneity of the
present/future Universe.Comment: 22 pages, 7 figures; Presentation modified substantially, results and
conclusions unchanged. Journal versio
Crossing the Phantom Divide Line in a DGP-Inspired -Gravity
We study possible crossing of the phantom divide line in a DGP-inspired
braneworld scenario where scalar field and curvature quintessence
are treated in a unified framework. With some specific form of and
by adopting a suitable ansatz, we show that there are appropriate regions of
the parameters space which account for late-time acceleration and admit
crossing of the phantom divide line.Comment: 23 Pages, 10 figs, Submitted to JCA
A Braneworld Dark Energy Model with Induced Gravity and the Gauss-Bonnet Effect
We construct a holographic dark energy model with a non-minimally coupled
scalar field on the brane where Gauss-Bonnet and Induced Gravity effects are
taken into account. This model provides a wide parameter space with several
interesting cosmological implications. Especially, the equation of state
parameter of the model crosses the phantom divide line and it is possible to
realize bouncing solutions in this setup.Comment: 20 pages, 3 eps figures, to appear in IJT