942 research outputs found

    Plasduino: an inexpensive, general purpose data acquisition framework for educational experiments

    Full text link
    Based on the Arduino development platform, Plasduino is an open-source data acquisition framework specifically designed for educational physics experiments. The source code, schematics and documentation are in the public domain under a GPL license and the system, streamlined for low cost and ease of use, can be replicated on the scale of a typical didactic lab with minimal effort. We describe the basic architecture of the system and illustrate its potential with some real-life examples.Comment: 11 pages, 10 figures, presented at the XCIX conference of the Societ\`a Italiana di Fisic

    Resting vs. active: a meta-analysis of the intra- and inter-specific associations between minimum, sustained, and maximum metabolic rates in vertebrates

    Get PDF
    Variation in aerobic capacity has far reaching consequences for the physiology, ecology, and evolution of vertebrates. Whether at rest or active, animals are constrained to operate within the energetic bounds determined by their minimum (minMR) and sustained or maximum metabolic rates (upperMR). MinMR and upperMR can differ considerably among individuals and species but are often presumed to be mechanistically linked to one another. Specifically, minMR is thought to reflect the idling cost of the machinery needed to support upperMR. However, previous analyses based on limited datasets have come to conflicting conclusions regarding the generality and strength of their association. Here we conduct the first comprehensive assessment of their relationship, based on a large number of published estimates of both the intra-specific (n = 176) and inter-specific (n = 41) phenotypic correlations between minMR and upperMR, estimated as either exercise-induced maximum metabolic rate (VO2max), cold-induced summit metabolic rate (Msum), or daily energy expenditure (DEE). Our meta-analysis shows that there is a general positive association between minMR and upperMR that is shared among vertebrate taxonomic classes. However, there was stronger evidence for intra-specific correlations between minMR and Msum and between minMR and DEE than there was for a correlation between minMR and VO2max across different taxa. As expected, inter-specific correlation estimates were consistently higher than intra-specific estimates across all traits and vertebrate classes. An interesting exception to this general trend was observed in mammals, which contrast with birds and exhibit no correlation between minMR and Msum. We speculate that this is due to the evolution and recruitment of brown fat as a thermogenic tissue, which illustrates how some species and lineages might circumvent this seemingly general association. We conclude that, in spite of some variability across taxa and traits, the contention that minMR and upperMR are positively correlated generally holds true both within and across vertebrate species. Ecological and comparative studies should therefore take into consideration the possibility that variation in any one of these traits might partly reflect correlated responses to selection on other metabolic parameters

    High-spin states and band terminations in v 49

    Get PDF
    High-spin states in 49 V have been studied through the 28 Si(28 Si, α3p) reaction using the EUROBALL γ-ray detector array. The 49 V level scheme has been extended up to 13.1 MeV including 21 new states. Both negative and positive parity states have been interpreted in the framework of theShell Model. The 27/2− and the 31/2+ band termination states have been observed in agreement with theoretical predictions.Fil: Rodrigues Ferreira Maltez, Dario Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Hojman, Daniel Leonardo. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lenzi, Silvia M.. Istituto Nazionale Di Fisica Nucleare.; Italia. Università di Padova; ItaliaFil: Cardona, Maria Angelica. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia Física (Centro Atómico Constituyentes). Proyecto Tandar; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Fernea, Enrico. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Axiotis, M.. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Beck, C.. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Bednarczyk, P.. Polish Academy of Sciences; ArgentinaFil: Bizzetti, P. G.. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Bizzetti Sona, A. M.. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Della Vedova, F.. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Grebosz, J.. Polish Academy of Sciences; ArgentinaFil: Haas, F.. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Kmiecik, M.. Polish Academy of Sciences; ArgentinaFil: Maj, A.. Polish Academy of Sciences; ArgentinaFil: Męczyński, W.. Polish Academy of Sciences; ArgentinaFil: Napoli, D. R.. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Nespolo, M.. Università di Padova; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Papka, P.. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Sánchez i Zafra, A.. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Styczen, J.. Polish Academy of Sciences; ArgentinaFil: Thummerer, S.. Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung; AlemaniaFil: Ziębliński, M.. Polish Academy of Sciences; Argentin

    On the development of a novel detector for simultaneous imaging and dosimetry in radiotherapy

    Get PDF
    Radiotherapy uses x-ray beams to deliver prescribed radiation doses that conform to target anatomy and minimise exposure of healthy tissue. Accuracy of dose delivery is essential, thus verification of dose distributions in vivo is desirable to monitor treatments and prevent errors from compromising patient outcomes. Electronic portal imaging devices (EPIDs) are commonly used x-ray imagers, however their non water-equivalent response complicates use for dosimetry. In this thesis, a Monte Carlo (MC) model of a standard EPID was developed and extended to novel water-equivalent configurations based on prototypes in which the high atomic number components were replaced with an array of plastic scintillator fibres. The model verified that full simulation of optical transport is not necessary to predict the standard EPID dose response, which can be accurately quantified from energy deposited in the phosphor screen. By incorporating computed tomography images into the model, its capacity to predict portal dose images of humanoid anatomy was also demonstrated. The prototype EPID’s water-equivalent dose response was characterised experimentally and with the MC model. Despite exhibiting lower spatial resolution and contrast-to-noise ratio relative to the standard EPID, its image quality was sufficient to discern gross anatomical structures of an anthropomorphic phantom. Opportunities to improve imaging performance while maintaining a water-equivalent dose response were identified using the model. Longer fibres increased efficiency and use of an extra-mural absorber maximised spatial resolution. Optical coupling between the scintillator fibres and the imaging panel may further improve performance. This thesis demonstrates the feasibility of developing a next-generation EPID for simultaneous imaging and dosimetry in radiotherapy. Such a detector could monitor treatment deliveries in vivo and thereby facilitate adaptations to treatment plans in order to improve patient outcomes

    Spectroscopy near the proton drip line in the deformed A=130 mass region : the Pr-126 nucleus

    Get PDF
    The near proton drip line nucleus Pr-126 was studied via in-beam gamma-ray spectroscopy using the Ca-40 + Mo-92 reaction at 190 MeV. We observed for the first time excited states above the known isomer in this nucleus up to 31 h over bar. The observed band is discussed in the interacting boson-fermion-fermion model.The calculations and the experimental information suggest a spin 8(+) for the lowest observed state.With such a spin assignment the moment of inertia of Pr-126 gets larger than in the heavier Pr isotopes, suggesting a sudden change in deformation close to the proton drip line

    How self-organization can guide evolution

    Get PDF
    Self-organization and natural selection are fundamental forces that shape the natural world. Substantial progress in understanding how these forces interact has been made through the study of abstract models. Further progress may be made by identifying a model system in which the interaction between self-organization and selection can be investigated empirically. To this end, we investigate how the self-organizing thermoregulatory huddling behaviours displayed by many species of mammals might influence natural selection of the genetic components of metabolism. By applying a simple evolutionary algorithm to a wellestablished model of the interactions between environmental, morphological, physiological and behavioural components of thermoregulation, we arrive at a clear, but counterintuitive, prediction: rodents that are able to huddle together in cold environments should evolve a lower thermal conductance at a faster rate than animals reared in isolation. The model therefore explains how evolution can be accelerated as a consequence of relaxed selection, and it predicts how the effect may be exaggerated by an increase in the litter size, i.e. by an increase in the capacity to use huddling behaviours for thermoregulation. Confirmation of these predictions in future experiments with rodents would constitute strong evidence of a mechanism by which self-organization can guide natural selection

    Direct observation of incommensurate magnetism in Hubbard chains

    Get PDF
    The interplay between magnetism and doping is at the origin of exotic strongly correlated electronic phases and can lead to novel forms of magnetic ordering. One example is the emergence of incommensurate spin-density waves with a wave vector that does not match the reciprocal lattice. In one dimension this effect is a hallmark of Luttinger liquid theory, which also describes the low energy physics of the Hubbard model. Here we use a quantum simulator based on ultracold fermions in an optical lattice to directly observe such incommensurate spin correlations in doped and spin-imbalanced Hubbard chains using fully spin and density resolved quantum gas microscopy. Doping is found to induce a linear change of the spin-density wave vector in excellent agreement with Luttinger theory predictions. For non-zero polarization we observe a decrease of the wave vector with magnetization as expected from the Heisenberg model in a magnetic field. We trace the microscopic origin of these incommensurate correlations to holes, doublons and excess spins which act as delocalized domain walls for the antiferromagnetic order. Finally, when inducing interchain coupling we observe fundamentally different spin correlations around doublons indicating the formation of a magnetic polaron

    Transition probabilities in the X(5) candidate 122^{122}Ba

    Full text link
    To investigate the possible X(5) character of 122Ba, suggested by the ground state band energy pattern, the lifetimes of the lowest yrast states of 122Ba have been measured, via the Recoil Distance Doppler-Shift method. The relevant levels have been populated by using the 108Cd(16O,2n)122Ba and the 112Sn(13C,3n)122Ba reactions. The B(E2) values deduced in the present work are compared to the predictions of the X(5) model and to calculations performed in the framework of the IBA-1 and IBA-2 models

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore