5 research outputs found

    Integration of Machine Learning and Mechanistic Models Accurately Predicts Variation in Cell Density of Glioblastoma Using Multiparametric MRI

    Get PDF
    Glioblastoma (GBM) is a heterogeneous and lethal brain cancer. These tumors are followed using magnetic resonance imaging (MRI), which is unable to precisely identify tumor cell invasion, impairing effective surgery and radiation planning. We present a novel hybrid model, based on multiparametric intensities, which combines machine learning (ML) with a mechanistic model of tumor growth to provide spatially resolved tumor cell density predictions. The ML component is an imaging data-driven graph-based semi-supervised learning model and we use the Proliferation-Invasion (PI) mechanistic tumor growth model. We thus refer to the hybrid model as the ML-PI model. The hybrid model was trained using 82 image-localized biopsies from 18 primary GBM patients with pre-operative MRI using a leave-one-patient-out cross validation framework. A Relief algorithm was developed to quantify relative contributions from the data sources. The ML-PI model statistically significantly outperformed (p \u3c 0.001) both individual models, ML and PI, achieving a mean absolute predicted error (MAPE) of 0.106 ± 0.125 versus 0.199 ± 0.186 (ML) and 0.227 ± 0.215 (PI), respectively. Associated Pearson correlation coefficients for ML-PI, ML, and PI were 0.838, 0.518, and 0.437, respectively. The Relief algorithm showed the PI model had the greatest contribution to the result, emphasizing the importance of the hybrid model in achieving the high accuracy

    Systematic Assessment Of Multi-Echo Dynamic Susceptibility Contrast Mri Using A Digital Reference Object

    No full text
    Purpose: Brain tumor dynamic susceptibility contrast (DSC) MRI is adversely impacted by T1 and (Formula presented.) contrast agent leakage effects that result in inaccurate hemodynamic metrics. While multi-echo acquisitions remove T1 leakage effects, there is no consensus on the optimal set of acquisition parameters. Using a computational approach, we systematically evaluated a wide range of acquisition strategies to determine the optimal multi-echo DSC-MRI perfusion protocol. Methods: Using a population-based DSC-MRI digital reference object (DRO), we assessed the influence of preload dosing (no preload and full dose preload), field strength (1.5 and 3T), pulse sequence parameters (echo time, repetition time, and flip angle), and leakage correction on relative cerebral blood volume (rCBV) and flow (rCBF) accuracy. We also compared multi-echo DSC-MRI protocols with standard single-echo protocols. Results: Multi-echo DSC-MRI is highly consistent across all protocols, and multi-echo rCBV (with or without use of a preload dose) had higher accuracy than single-echo rCBV. Regression analysis showed that choice of repetition time and flip angle had minimal impact on multi-echo rCBV and rCBV, indicating the potential for significant flexibility in acquisition parameters. The echo time combination had minimal impact on rCBV, though longer echo times should be avoided, particularly at higher field strengths. Leakage correction improved rCBV accuracy in all cases. Multi-echo rCBF was less biased than single-echo rCBF, although rCBF accuracy was reduced overall relative to rCBV. Conclusions: Multi-echo acquisitions were more robust than single-echo, essentially decoupling both repetition time and flip angle from rCBV accuracy. Multi-echo acquisitions obviate the need for preload dosing, although leakage correction to remove residual (Formula presented.) leakage effects remains compulsory for high rCBV accuracy

    Systematic assessment of multi-echo dynamic susceptibility contrast MRI using a digital reference object.

    No full text
    PURPOSE: Brain tumor dynamic susceptibility contrast (DSC) MRI is adversely impacted by T METHODS: Using a population-based DSC-MRI digital reference object (DRO), we assessed the influence of preload dosing (no preload and full dose preload), field strength (1.5 and 3T), pulse sequence parameters (echo time, repetition time, and flip angle), and leakage correction on relative cerebral blood volume (rCBV) and flow (rCBF) accuracy. We also compared multi-echo DSC-MRI protocols with standard single-echo protocols. RESULTS: Multi-echo DSC-MRI is highly consistent across all protocols, and multi-echo rCBV (with or without use of a preload dose) had higher accuracy than single-echo rCBV. Regression analysis showed that choice of repetition time and flip angle had minimal impact on multi-echo rCBV and rCBV, indicating the potential for significant flexibility in acquisition parameters. The echo time combination had minimal impact on rCBV, though longer echo times should be avoided, particularly at higher field strengths. Leakage correction improved rCBV accuracy in all cases. Multi-echo rCBF was less biased than single-echo rCBF, although rCBF accuracy was reduced overall relative to rCBV. CONCLUSIONS: Multi-echo acquisitions were more robust than single-echo, essentially decoupling both repetition time and flip angle from rCBV accuracy. Multi-echo acquisitions obviate the need for preload dosing, although leakage correction to remove residua

    Preliminary Assessment of Intravoxel Incoherent Motion Diffusion-Weighted MRI (IVIM-DWI) Metrics in Alzheimer\u27s Disease

    No full text
    Background: Alzheimer\u27s disease (AD) is a progressive neurodegenerative disease that affects aging populations. Current MRI techniques are often limited in their sensitivity to underlying neuropathological changes. Purpose: To characterize differences in voxel-based morphometry (VBM), apparent diffusion coefficient (ADC), and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) metrics in aging populations. Additionally, to investigate the connection between cognitive assessments and neuroimaging metrics. Study Type: Prospective/cross-sectional. Population: In all, 49 subjects, including 13 with AD dementia, 12 with mild cognitive impairment (MCI), and 24 healthy controls (HC). Field Strength/Sequence: 3T/magnetization-prepared rapid acquisition gradient echo (MP-RAGE) and IVIM-DWI. Assessment: All participants completed a cognitive screening battery prior to MRI. IVIM-DWI maps (pure diffusion coefficient [D], pseudodiffusion coefficient [D*], and perfusion fraction [f]) were generated from a biexponential fit of diffusion MRI data. VBM was performed on the standard T1-weighted MP-RAGE structural images. Group-wise templates were used to compare across groups. Statistical Tests: Analysis of covariance (ANCOVA) with gender and age as covariates (familywise error [FWE] corrected, post-hoc comparisons using Bonferroni correction) for group comparisons. Partial-η2 and Hedges\u27 g were used for effect-size analysis. Spearman\u27s correlations (false discovery rate [FDR]-corrected) for the relationship between cognitive scores and imaging. Results: Clusters of significant group-wise differences were found mainly in the temporal lobe, hippocampus, and amygdala using all VBM and IVIM methods (P \u3c 0.05 FWE). While VBM showed significant changes between MCI and AD groups and between HC and AD groups, no significant clusters were observed between HC and MCI using VBM. ADC and IVIM-D demonstrated significant changes, at P \u3c 0.05 FWE, between HC and MCI, notably in the amygdala and hippocampus. Several voxel-based correlations were observed between neuroimaging metrics and cognitive tests within the cognitively impaired groups (P \u3c 0.05 FDR). Data Conclusion: These findings suggest that IVIM-DWI metrics may be earlier biomarkers for AD-related changes than VBM. The use of these techniques may provide novel insight into subvoxel neurodegenerative processes. Level of Evidence: 2. Technical Efficacy Stage: 2 J. MAGN. RESON. IMAGING 2020;52:1811–1826

    Integrated molecular and multiparametric MRI mapping of high-grade glioma identifies regional biologic signatures

    No full text
    Abstract Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting
    corecore