1 research outputs found

    Structure of the human gene for monoamine oxidase type A.

    No full text
    Monoamine oxidases, type A and type B, are principal enzymes for the degradation of biogenic amines, including catecholamines and serotonin. These isozymes have been implicated in neuropsychiatric disorders. Previously, cDNA clones for both MAO-A and MAO-B have been sequenced and the genes encoding them have been localized to human chromosome Xp11.23-Xp11.4. In this work, we isolated human genomic clones spanning almost all the MAOA gene from cosmid and phage libraries using a cDNA probe for MAO-A. Restriction mapping and sequencing show that the human MAOA gene extends over 70 kb and is composed of 15 exons. The exon structure of human MAOA is similar to that described by others for human MAOB. Exon 12 (bearing the codon for cysteine, which carries the covalently bound FAD cofactor) and exon 13 are highly conserved between human MAOA and MAOB genes (92% at the amino acid level). Earlier work revealed two species of MAO-A mRNA, 2.1 kb and 4.5-5.5 kb. We now report on further cDNA isolation and sequencing, which demonstrates that the longer message has an extension of 2.2 kb in the 3' noncoding region. This extended region is contained entirely within exon 15. The two messages therefore appear to be generated by the use of two alternative polyadenylation sites. Results from the present work should facilitate the mutational analysis of functional domains of MAO-A and MAO-B. Knowledge of the gene structure will also help in evaluating the role of genetic variations in MAO-A in human disease through the use of genomic DNA, which is more accessible than the RNA, as a template for PCR-amplification and sequencing
    corecore