245 research outputs found

    Multi-center MICZ-Kepler systems

    Full text link
    We present the classical solutions of the two-center MICZ-Kepler and MICZ-Kepler-Stark systems. Then we suggest the model of multi-center MICZ-Kepler system on the curved spaces equipped with so(3)so(3)-invariant conformal flat metrics.Comment: 7 pages, typos corrected, refs added. Contribution to the Proceedings of International Workshop on Classical and Quantum Integrable systems, 24-28.01.2007, Dubna, Russi

    3D Oscillator and Coulomb Systems reduced from Kahler spaces

    Full text link
    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kahler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kahler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid are originated. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is non-Kahler one. Finally, we extend these results to the family of Kahler spaces with conic singularities.Comment: To the memory of Professor Valery Ter-Antonyan, 11 page

    Multi-center MICZ-Kepler system, supersymmetry and integrability

    Get PDF
    We propose the general scheme of incorporation of the Dirac monopoles into mechanical systems on the three-dimensional conformal flat space. We found that any system (without monopoles) admitting the separation of variables in the elliptic or parabolic coordinates can be extended to the integrable system with the Dirac monopoles located at the foci of the corresponding coordinate systems. Particular cases of this class of system are the two-center MICZ-Kepler system in the Euclidean space, the limiting case when one of the background dyons is located at the infinity as well as the model of particle in parabolic quantum dot in the presence of parallel constant uniform electric and magnetic fields.Comment: 5 pages, revtex, revised versio

    Hamiltonian Frenet-Serret dynamics

    Get PDF
    The Hamiltonian formulation of the dynamics of a relativistic particle described by a higher-derivative action that depends both on the first and the second Frenet-Serret curvatures is considered from a geometrical perspective. We demonstrate how reparametrization covariant dynamical variables and their projections onto the Frenet-Serret frame can be exploited to provide not only a significant simplification of but also novel insights into the canonical analysis. The constraint algebra and the Hamiltonian equations of motion are written down and a geometrical interpretation is provided for the canonical variables.Comment: Latex file, 14 pages, no figures. Revised version to appear in Class. Quant. Gra

    A note on N=4 supersymmetric mechanics on K\"ahler manifolds

    Full text link
    The geometric models of N=4 supersymmetric mechanics with (2d.2d)_{\DC}-dimensional phase space are proposed, which can be viewed as one-dimensional counterparts of two-dimensional N=2 supersymmetric sigma-models by Alvarez-Gaum\'e and Freedman. The related construction of supersymmetric mechanics whose phase space is a K\"ahler supermanifold is considered. Also, its relation with antisymplectic geometry is discussed.Comment: 4 pages, revte

    The charge-dyon bound system in the spherical quantum well

    Full text link
    The spherical wave functions of charge-dyon bounded system in a rectangular spherical quantum dot of infinitely and finite height are calculated. The transcendent equations, defining the energy spectra of the systems are obtained. The dependence of the energy levels from the wall sizes is found.Comment: 8 pages, 5 figure

    How to relate the oscillator and Coulomb systems on spheres and pseudospheres?

    Full text link
    We show that the oscillators on a sphere and pseudosphere are related, by the so-called Bohlin transformation, with the Coulomb systems on the pseudosphere: the even states of an oscillator yields the conventional Coulomb system on pseudosphere, while the odd states yield the Coulomb system on pseudosphere in the presence of magnetic flux tube generating half spin. In the higher dimensions the oscillator and Coulomb(-like) systems are connected in the similar way. In particular, applying the Kustaanheimo-Stiefel transformation to the oscillators on sphere and pseudosphere, we obtained the preudospherical generalization of MIC-Kepler problem describing three-dimensional charge-dyon system.Comment: 12 pages, Based on talk given at XXIII Colloquium on Group Theoretical Methods in Physics (July 31-August 5, 2000, Dubna

    Frenet-Serret dynamics

    Get PDF
    We consider the motion of a particle described by an action that is a functional of the Frenet-Serret [FS] curvatures associated with the embedding of its worldline in Minkowski space. We develop a theory of deformations tailored to the FS frame. Both the Euler-Lagrange equations and the physical invariants of the motion associated with the Poincar\'e symmetry of Minkowski space, the mass and the spin of the particle, are expressed in a simple way in terms of these curvatures. The simplest non-trivial model of this form, with the lagrangian depending on the first FS (or geodesic) curvature, is integrable. We show how this integrability can be deduced from the Poincar\'e invariants of the motion. We go on to explore the structure of these invariants in higher-order models. In particular, the integrability of the model described by a lagrangian that is a function of the second FS curvature (or torsion) is established in a three dimensional ambient spacetime.Comment: 20 pages, no figures - replaced with version to appear in Class. Quant. Grav. - minor changes, added Conclusions sectio

    Closed trajectories of a particle model on null curves in anti-de Sitter 3-space

    Full text link
    We study the existence of closed trajectories of a particle model on null curves in anti-de Sitter 3-space defined by a functional which is linear in the curvature of the particle path. Explicit expressions for the trajectories are found and the existence of infinitely many closed trajectories is proved.Comment: 12 pages, 1 figur

    Generalizations of MICZ-Kepler system

    Full text link
    We discuss the generalizations of the MICZ-Kepler system (the system describing the motion of the charged particle in the field of Dirac dyon), to the curved spaces, arbitrary potentials and to the multi-dyon background.Comment: 6 pages, talk given at Colloquium on Integrable models and Quantum symmetry, 14-16.07.2007, Prague. submitted in Rep. Math.Phy
    corecore