4 research outputs found

    Physics-Informed Calibration of Aeromagnetic Compensation in Magnetic Navigation Systems using Liquid Time-Constant Networks

    Full text link
    Magnetic navigation (MagNav) is a rising alternative to the Global Positioning System (GPS) and has proven useful for aircraft navigation. Traditional aircraft navigation systems, while effective, face limitations in precision and reliability in certain environments and against attacks. Airborne MagNav leverages the Earth's magnetic field to provide accurate positional information. However, external magnetic fields induced by aircraft electronics and Earth's large-scale magnetic fields disrupt the weaker signal of interest. We introduce a physics-informed approach using Tolles-Lawson coefficients for compensation and Liquid Time-Constant Networks (LTCs) to remove complex, noisy signals derived from the aircraft's magnetic sources. Using real flight data with magnetometer measurements and aircraft measurements, we observe up to a 64% reduction in aeromagnetic compensation error (RMSE nT), outperforming conventional models. This significant improvement underscores the potential of a physics-informed, machine learning approach for extracting clean, reliable, and accurate magnetic signals for MagNav positional estimation.Comment: Accepted at the NeurIPS 2023 Machine Learning and the Physical Sciences workshop, 7 pages, 4 figures, see code here: https://github.com/fnerrise/LNNs_MagNav

    An Explainable Geometric-Weighted Graph Attention Network for Identifying Functional Networks Associated with Gait Impairment

    Full text link
    One of the hallmark symptoms of Parkinson's Disease (PD) is the progressive loss of postural reflexes, which eventually leads to gait difficulties and balance problems. Identifying disruptions in brain function associated with gait impairment could be crucial in better understanding PD motor progression, thus advancing the development of more effective and personalized therapeutics. In this work, we present an explainable, geometric, weighted-graph attention neural network (xGW-GAT) to identify functional networks predictive of the progression of gait difficulties in individuals with PD. xGW-GAT predicts the multi-class gait impairment on the MDS Unified PD Rating Scale (MDS-UPDRS). Our computational- and data-efficient model represents functional connectomes as symmetric positive definite (SPD) matrices on a Riemannian manifold to explicitly encode pairwise interactions of entire connectomes, based on which we learn an attention mask yielding individual- and group-level explainability. Applied to our resting-state functional MRI (rs-fMRI) dataset of individuals with PD, xGW-GAT identifies functional connectivity patterns associated with gait impairment in PD and offers interpretable explanations of functional subnetworks associated with motor impairment. Our model successfully outperforms several existing methods while simultaneously revealing clinically-relevant connectivity patterns. The source code is available at https://github.com/favour-nerrise/xGW-GAT .Comment: Accepted by the 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023). MICCAI Student-Author Registration (STAR) Award. 11 pages, 2 figures, 1 table, appendix. Source Code: https://github.com/favour-nerrise/xGW-GA

    Project Proposal: UFC District Use Case

    No full text
    Class of 2021The Final Deliverable Package includes a complete conceptual design and techno-economic analysis of a proposed interconnected solar PV plus battery electric storage system that maximizes energy offset and savings over the system’s contracted (if PPA or lease) or useful (if cash purchase) lifetime for the division district, given its use case parameters and conditions.U.S. Department of Energy Solar District Cup Collegiate Design Competition; reACT ThinkTan

    User-Driven Support for Visualization Prototyping in D3

    No full text
    Templates have emerged as an effective approach to simplifying the visualization design and programming process. For example, they enable users to quickly generate multiple visualization designs even when using complex toolkits like D3. However, these templates are often treated as rigid artifacts that respond poorly to changes made outside of the template’s established parameters, limiting user creativity. Preserving the user’s creative flow requires a more dynamic approach to template-based visualization design, where tools can respond gracefully to users’ edits when they modify templates in unexpected ways. In this paper, we leverage the structural similarities revealed by templates to design resilient support features for prototyping D3 visualizations: recommendations to suggest complementary interactions for a users’ D3 program; and code augmentation to implement recommended interactions with a single click, even when users deviate from pre-defined templates. We demonstrate the utility of these features in Mirny, a designfocused prototyping environment for D3. In a user study with 20 D3 users, we find that these automated features enable participants to prototype their design ideas with significantly fewer programming iterations. We also characterize key modification strategies used by participants to customize D3 templates. Informed by our findings and participants’ feedback, we discuss the key implications of the use of templates for interleaving visualization programming and design.https://doi.org/10.1145/3581641.358404
    corecore