24 research outputs found
Universal field equations for metric-affine theories of gravity
We show that almost all metric--affine theories of gravity yield Einstein
equations with a non--null cosmological constant . Under certain
circumstances and for any dimension, it is also possible to incorporate a Weyl
vector field and therefore the presence of an anisotropy. The viability
of these field equations is discussed in view of recent astrophysical
observations.Comment: 13 pages. This is a copy of the published paper. We are posting it
here because of the increasing interest in f(R) theories of gravit
A homotopy approach to the feedback stabilization of linear systems
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76174/1/AIAA-20236-533.pd
Geometric origin of mechanical properties of granular materials
Some remarkable generic properties, related to isostaticity and potential
energy minimization, of equilibrium configurations of assemblies of rigid,
frictionless grains are studied. Isostaticity -the uniqueness of the forces,
once the list of contacts is known- is established in a quite general context,
and the important distinction between isostatic problems under given external
loads and isostatic (rigid) structures is presented. Complete rigidity is only
guaranteed, on stability grounds, in the case of spherical cohesionless grains.
Otherwise, the network of contacts might deform elastically in response to load
increments, even though grains are rigid. This sets an uuper bound on the
contact coordination number. The approximation of small displacements (ASD)
allows to draw analogies with other model systems studied in statistical
mechanics, such as minimum paths on a lattice. It also entails the uniqueness
of the equilibrium state (the list of contacts itself is geometrically
determined) for cohesionless grains, and thus the absence of plastic
dissipation. Plasticity and hysteresis are due to the lack of such uniqueness
and may stem, apart from intergranular friction, from small, but finite,
rearrangements, in which the system jumps between two distinct potential energy
minima, or from bounded tensile contact forces. The response to load increments
is discussed. On the basis of past numerical studies, we argue that, if the ASD
is valid, the macroscopic displacement field is the solution to an elliptic
boundary value problem (akin to the Stokes problem).Comment: RevTex, 40 pages, 26 figures. Close to published paper. Misprints and
minor errors correcte