46 research outputs found
Comparative genomics of metabolic networks of free-living and parasitic eukaryotes
BACKGROUND: Obligate endoparasites often lack particular metabolic pathways as compared to free-living organisms. This phenomenon comprises anabolic as well as catabolic reactions. Presumably, the corresponding enzymes were lost in adaptation to parasitism. Here we compare the predicted core metabolic graphs of obligate endoparasites and non-parasites (free living organisms and facultative parasites) in order to analyze how the parasites' metabolic networks shrunk in the course of evolution. RESULTS: Core metabolic graphs comprising biochemical reactions present in the presumed ancestor of parasites and non-parasites were reconstructed from the Kyoto Encyclopedia of Genes and Genomes. While the parasites' networks had fewer nodes (metabolites) and edges (reactions), other parameters such as average connectivity, network diameter and number of isolated edges were similar in parasites and non-parasites. The parasites' networks contained a higher percentage of ATP-consuming reactions and a lower percentage of NAD-requiring reactions. Control networks, shrunk to the size of the parasites' by random deletion of edges, were scale-free but exhibited smaller diameters and more isolated edges. CONCLUSIONS: The parasites' networks were smaller than those of the non-parasites regarding number of nodes or edges, but not regarding network diameters. Network integrity but not scale-freeness has acted as a selective principle during the evolutionary reduction of parasite metabolism. ATP-requiring reactions in particular have been retained in the parasites' core metabolism whil
Immunology in Africa.
Africa is a continent with a large burden of both infectious and non-communicable diseases. If we are to move forward as a continent, we need to equip our growing cadre of exceptional young scientists with the skills needed to tackle the diseases endemic to this continent. For this, immunology is among the key disciplines. Africans should be empowered to study and understand the diseases that affect them, and to perform their cutting-edge research in their country of origin. This requires a multifaceted approach, with buy-in from funders, overseas partners and perhaps, most important of all, African governments themselves
The Lake Victoria Island Intervention Study on Worms and Allergy-related diseases (LaVIISWA): study protocol for a randomised controlled trial.
BACKGROUND: The Hygiene Hypothesis proposes that infection exposure protects against inflammatory conditions. Helminths possess allergen-like molecules and may specifically modulate allergy-related immunological pathways to inhibit responses which protect against them. Mass drug administration is recommended for helminth-endemic communities to control helminth-induced pathology, but may also result in increased rates of inflammation-mediated diseases in resource-poor settings. Immunological studies integrated with implementation of helminth control measures may elucidate how helminth elimination contributes to ongoing epidemics of inflammatory diseases. We present the design of the Lake Victoria Island Intervention Study on Worms and Allergy-related diseases (LaVIISWA), a cluster-randomised trial evaluating the risks and benefits of intensive versus standard anthelminthic treatment for allergy-related diseases and other health outcomes. METHODS/DESIGN: The setting is comprised of island fishing communities in Mukono district, Uganda. Twenty-six communities have been randomised in a 1:1 ratio to receive standard or intensive anthelminthic intervention for a three-year period. Baseline characteristics were collected immediately prior to intervention rollout, commenced in February 2013. Primary outcomes are reported wheeze in the past 12 months and atopy (skin prick test response and allergen-specific immunoglobulin (asIg) E concentration). Secondary outcomes are visible flexural dermatitis, helminth infections, haemoglobin, growth parameters, hepatosplenomegaly, and responses to vaccine antigens. The trial provides a platform for in-depth analysis of clinical and immunological consequences of the contrasting interventions. DISCUSSION: The baseline survey has been completed successfully in a challenging environment. Baseline characteristics were balanced between trial arms. Prevalence of Schistosoma mansoni, hookworm, Strongyloides stercoralis and Trichuris trichiura was 52%, 23%, 13%, and 12%, respectively; 31% of Schistosoma mansoni infections were heavy (>400 eggs/gram). The prevalence of reported wheeze and positive skin prick test to any allergen was 5% and 20%, respectively. Respectively, 77% and 87% of participants had Dermatophagoides- and German cockroach-specific IgE above 0.35 kUA/L. These characteristics suggest that the LaVIISWA study will provide an excellent framework for investigating beneficial and detrimental effects of worms and their treatment, and the mechanisms of such effects. TRIAL REGISTRATION: This trial was registered with Current Controlled Trials (identifier: ISRCTN47196031) on 7 September 2012
Variants of IL6, IL10, FCN2, RNASE3, IL12B and IL17B loci are associated with Schistosoma mansoni worm burden in the Albert Nile region of Uganda
Background:
Individuals genetically susceptible to high schistosomiasis worm burden may contribute disproportionately to transmission and could be prioritized for control. Identifying genes involved may guide development of therapy.
//
Methodology/Principal findings:
A cohort of 606 children aged 10–15 years were recruited in the Albert Nile region of Uganda and assessed for Schistosoma mansoni worm burden using the Up-Converting Particle Lateral Flow (UCP-LF) test detecting circulating anodic antigen (CAA), point-of-care Circulating Cathodic Antigen (POC-CCA) and Kato-Katz tests. Whole genome genotyping was conducted on 326 children comprising the top and bottom 25% of worm burden. Linear models were fitted to identify variants associated with worm burden in preselected candidate genes. Expression quantitative trait locus (eQTL) analysis was conducted for candidate genes with UCP-LF worm burden included as a covariate. Single Nucleotide Polymorphism loci associated with UCP-LF CAA included IL6 rs2066992 (OR = 0.43, p = 0.0006) and rs7793163 (OR = 2.0, p = 0.0007); IL21 SNP kgp513476 (OR 1.79, p = 0.0025) and IL17B SNP kgp708159 (OR = 0.35, p = 0.0028). A haplotype in the IL10 locus was associated with lower worm burden (OR = 0.53, p = 0.015) and overlapped SNPs rs1800896, rs1800871 and rs1800872. Significant haplotypes (p<0.05, overlapping significant SNP) associated with worm burden were observed in IL6 and the Th17 pathway IL12B and IL17B genes. There were significant eQTL in the IL6, IL5, IL21, IL25 and IFNG regions.
//
Conclusions:
Variants associated with S. mansoni worm burden were in IL6, FCN2, RNASE3, IL10, IL12B and IL17B gene loci. However only eQTL associations remained significant after Bonferroni correction. In summary, immune balance, pathogen recognition and Th17 pathways may play a role in modulating Schistosoma worm burden. Individuals carrying risk variants may be targeted first in allocation of control efforts to reduce the burden of schistosomiasis in the community
Transcriptome analysis of peripheral blood of Schistosoma mansoni infected children from the Albert Nile region in Uganda reveals genes implicated in fibrosis pathology.
Over 290 million people are infected by schistosomes worldwide. Schistosomiasis control efforts focus on mass drug treatment with praziquantel (PZQ), a drug that kills the adult worm of all Schistosoma species. Nonetheless, re-infections have continued to be detected in endemic areas with individuals living in the same area presenting with varying infection intensities. Our objective was to characterize the transcriptome profiles in peripheral blood of children between 10-15 years with varying intensities of Schistosoma mansoni infection living along the Albert Nile in Uganda. RNA extracted from peripheral blood collected from 44 S. mansoni infected (34 high and 10 low by circulating anodic antigen [CAA] level) and 20 uninfected children was sequenced using Illumina NovaSeq S4 and the reads aligned to the GRCh38 human genome. Differential gene expression analysis was done using DESeq2. Principal component analysis revealed clustering of gene expression by gender when S. mansoni infected children were compared with uninfected children. In addition, we identified 14 DEGs between S. mansoni infected and uninfected individuals, 56 DEGs between children with high infection intensity and uninfected individuals, 33 DEGs between those with high infection intensity and low infection intensity and no DEGs between those with low infection and uninfected individuals. We also observed upregulation and downregulation of some DEGs that are associated with fibrosis and its regulation. These data suggest expression of fibrosis associated genes as well as genes that regulate fibrosis in S. mansoni infection. The relatively few significant DEGS observed in children with schistosomiasis suggests that chronic S. mansoni infection is a stealth infection that does not stimulate a strong immune response
Melarsoprol- and pentamidine-resistant Trypanosoma brucei rhodesiense populations and their cross-resistance
Resistance to melarsoprol and pentamidine was induced in bloodstream-form Trypanosoma brucei rhodesiense STIB 900 in vitro, and drug sensitivity was determined for melarsoprol, pentamidine and furamidine. The resistant populations were also inoculated into immunosuppressed mice to verify infectivity and to monitor whether rodent passage selects for clones with altered drug sensitivity. After proliferation in the mouse, trypanosomes were isolated and their IC(50) values to the three drugs were determined. To assess the stability of drug-induced resistance, drug pressure was ceased for 2 months and the drug sensitivity was determined again. Resistance was stable, with a few exceptions that are discussed. Drug IC(50)s indicated cross-resistance among all drugs, but to varying extents: resistance of the melarsoprol-selected and pentamidine-selected trypanosomes to pentamidine was the same, but the pentamidine-selected trypanosome population showed lower resistance to melarsoprol than the melarsoprol-selected trypanosomes. Interestingly, both resistant populations revealed the same intermediate cross-resistance to furamidine. Resistant trypanosome populations were characterised by molecular means, referring to the status of the TbAT1 gene. The melarsoprol-selected population apparently had lost TbAT1, whereas in the pentamidine-selected trypanosome population it was still present
Loss of the high-affinity pentamidine transporter is responsible for high levels of cross-resistance between arsenical and diamidine drugs in African trypanosomes
Treatment of many infectious diseases is under threat from drug resistance. Understanding the mechanisms of resistance is as high a priority as the development of new drugs. We have investigated the basis for cross-resistance between the diamidine and melaminophenyl arsenical classes of drugs in African trypanosomes. We induced high levels of pentamidine resistance in a line without the tbat1 gene that encodes the P2 transporter previously implicated in drug uptake. We isolated independent clones that displayed very considerable cross-resistance with melarsen oxide but not phenylarsine oxide and reduced uptake of [3H]pentamidine. In particular, the high-affinity pentamidine transport (HAPT1) activity was absent in the pentamidine-adapted lines, whereas the low affinity pentamidine transport (LAPT1) activity was unchanged. The parental tbat1–/– line was sensitive to lysis by melarsen oxide, and this process was inhibited by low concentrations of pentamidine, indicating the involvement of HAPT1. This pentamidine-inhibitable lysis was absent in the adapted line KO-B48. Likewise, uptake of the fluorescent diamidine 4′,6-diamidino-2-phenylindole dihydrochloride was much delayed in live KO-B48 cells and insensitive to competition with up to 10 μM pentamidine. No overexpression of the Trypanosoma brucei brucei ATP-binding cassette transporter TbMRPA could be detected in KO-B48. We also show that a laboratory line of Trypanosoma brucei gambiense, adapted to high levels of resistance for the melaminophenyl arsenical drug melarsamine hydrochloride (Cymelarsan), had similarly lost TbAT1 and HAPT1 activity while retaining LAPT1 activity. It seems therefore that selection for resistance to either pentamidine or arsenical drugs can result in a similar phenotype of reduced drug accumulation, explaining the occurrence of cross-resistance
Immunogenicity and Serological Cross-Reactivity of Saliva Proteins among Different Tsetse Species.
Tsetse are vectors of pathogenic trypanosomes, agents of human and animal trypanosomiasis in Africa. Components of tsetse saliva (sialome) are introduced into the mammalian host bite site during the blood feeding process and are important for tsetse's ability to feed efficiently, but can also influence disease transmission and serve as biomarkers for host exposure. We compared the sialome components from four tsetse species in two subgenera: subgenus Morsitans: Glossina morsitans morsitans (Gmm) and Glossina pallidipes (Gpd), and subgenus Palpalis: Glossina palpalis gambiensis (Gpg) and Glossina fuscipes fuscipes (Gff), and evaluated their immunogenicity and serological cross reactivity by an immunoblot approach utilizing antibodies from experimental mice challenged with uninfected flies. The protein and immune profiles of sialome components varied with fly species in the same subgenus displaying greater similarity and cross reactivity. Sera obtained from cattle from disease endemic areas of Africa displayed an immunogenicity profile reflective of tsetse species distribution. We analyzed the sialome fractions of Gmm by LC-MS/MS, and identified TAg5, Tsal1/Tsal2, and Sgp3 as major immunogenic proteins, and the 5'-nucleotidase family as well as four members of the Adenosine Deaminase Growth Factor (ADGF) family as the major non-immunogenic proteins. Within the ADGF family, we identified four closely related proteins (TSGF-1, TSGF-2, ADGF-3 and ADGF-4), all of which are expressed in tsetse salivary glands. We describe the tsetse species-specific expression profiles and genomic localization of these proteins. Using a passive-immunity approach, we evaluated the effects of rec-TSGF (TSGF-1 and TSGF-2) polyclonal antibodies on tsetse fitness parameters. Limited exposure of tsetse to mice with circulating anti-TSGF antibodies resulted in a slight detriment to their blood feeding ability as reflected by compromised digestion, lower weight gain and less total lipid reserves although these results were not statistically significant. Long-term exposure studies of tsetse flies to antibodies corresponding to the ADGF family of proteins are warranted to evaluate the role of this conserved family in fly biology