5 research outputs found

    Framing Network Flow for Anomaly Detection Using Image Recognition and Federated Learning

    No full text
    The intrusion detection system (IDS) must be able to handle the increase in attack volume, increasing Internet traffic, and accelerating detection speeds. Network flow feature (NTF) records are the input of flow-based IDSs that are used to determine whether network traffic is normal or malicious in order to avoid IDS from difficult and time-consuming packet content inspection processing since only flow records are examined. To reduce computational power and training time, this paper proposes a novel pre-processing method merging a specific amount of NTF records into frames, and frame transformation into images. Federated learning (FL) enables multiple users to share the learned models while maintaining the privacy of their training data. This research suggests federated transfer learning and federated learning methods for NIDS employing deep learning for image classification and conducting tests on the BOUN DDoS dataset to address the issue of training data privacy. Our experimental results indicate that the proposed Federated transfer learning (FTL) and FL methods for training do not require data centralization and preserve participant data privacy while achieving acceptable accuracy in DDoS attack identification: FTL (92.99%) and FL (88.42%) in comparison with Traditional transfer learning (93.95%)

    Distributed Agent-Based Orchestrator Model for Fog Computing

    No full text
    Fog computing is an extension of cloud computing that provides computing services closer to user end-devices at the network edge. One of the challenging topics in fog networks is the placement of tasks on fog nodes to obtain the best performance and resource usage. The process of mapping tasks for resource-constrained devices is known as the service or fog application placement problem (SPP, FAPP). The highly dynamic fog infrastructures with mobile user end-devices and constantly changing fog nodes resources (e.g., battery life, security level) require distributed/decentralized service placement (orchestration) algorithms to ensure better resilience, scalability, and optimal real-time performance. However, recently proposed service placement algorithms rarely support user end-device mobility, constantly changing the resource availability of fog nodes and the ability to recover from fog node failures at the same time. In this article, we propose a distributed agent-based orchestrator model capable of flexible service provisioning in a dynamic fog computing environment by considering the constraints on the central processing unit (CPU), memory, battery level, and security level of fog nodes. Distributing the decision-making to multiple orchestrator fog nodes instead of relying on the mapping of a single central entity helps to spread the load and increase scalability and, most importantly, resilience. The prototype system based on the proposed orchestrator model was implemented and tested with real hardware. The results show that the proposed model is efficient in terms of response latency and computational overhead, which are minimal compared to the placement algorithm itself. The research confirms that the proposed orchestrator approach is suitable for various fog network applications when scalability, mobility, and fault tolerance must be guaranteed

    A Novel Approach for Network Intrusion Detection Using Multistage Deep Learning Image Recognition

    No full text
    The current rise in hacking and computer network attacks throughout the world has heightened the demand for improved intrusion detection and prevention solutions. The intrusion detection system (IDS) is critical in identifying abnormalities and assaults on the network, which have grown in size and pervasiveness. The paper proposes a novel approach for network intrusion detection using multistage deep learning image recognition. The network features are transformed into four-channel (Red, Green, Blue, and Alpha) images. The images then are used for classification to train and test the pre-trained deep learning model ResNet50. The proposed approach is evaluated using two publicly available benchmark datasets, UNSW-NB15 and BOUN Ddos. On the UNSW-NB15 dataset, the proposed approach achieves 99.8% accuracy in the detection of the generic attack. On the BOUN DDos dataset, the suggested approach achieves 99.7% accuracy in the detection of the DDos attack and 99.7% accuracy in the detection of the normal traffic
    corecore