3 research outputs found

    A Fire-Retardant Composite Made from Domestic Waste and PVA

    Get PDF
    We report the synthesis of a composite from domestic waste with the strength of wood building materials. We used original domestic waste with only a simple pretreatment to reduce the processing cost. The wastes were composed of organic components (generally originating from foods), paper, plastics, and clothes; the average fraction of each type of waste mirrored the corresponding fractions of wastes in the city of Bandung, Indonesia. An initial survey of ten landfills scattered through Bandung was conducted to determine the average fraction of each component in the waste. The composite was made using a hot press. A large number of synthesis parameters were tested to determine the optimum ones. The measured mechanical strength of the produced composite approached the mechanical properties of wood building materials. A fire-retardant powder was added to retard fire so that the composite could be useful for the construction of residential homes of lower-income people who often have problems with fire. Fire tests showed that the composites were more resistant to fire than widely used wood building materials

    A novel method for characterizing temperature-dependent elastic modulus and glass transition temperature by processing the images of bending cantilever slender beams at different temperatures

    No full text
    We propose a novel method for estimating the elastic modulus of several materials by processing the bending image of cantilever material sheets. The calculated results (tested for five samples) were consistent with data obtained by direct measurement using a tensile strength device. By placing the cantilever sheets in an environment inside of which the temperature could be controlled, we were able to obtain the temperature dependence of elastic modulus. We identified a drastic drop of elastic modulus at a certain temperature and assumed this temperature corresponds to glass transition temperature. We also introduced an equation for describing the elastic modulus around that critical temperature and were able to estimate the glass transition temperature for all tested polymer materials. Surprisingly, the estimated glass transition temperatures conform to data obtained by direct measurement using a DTA device. Since the elastic modulus changes suddenly around the glass transition temperature, the proposed method might be more accurate than measurement using a DTA device where the glass transition temperature corresponds to the location of a weak peak at the DTA curve. This is the first attempt for estimating the glass transition temperature of polymer based on bending of cantilever slender beam, and seems to be the simplest method. The method is very potential for developing new equipment for determining the glass transition temperature of polymeric materials
    corecore