1,461 research outputs found
Equalizer tap length requirement for mode group delay-compensated fiber link with weakly random mode coupling
The equalizer tap length requirement is investigated analytically and numerically for differential modal group delay (DMGD) compensated fiber link with weakly random mode coupling. Each span of the DMGD compensated link comprises multiple pairs of fibers which have opposite signs of DMGD. The result reveals that under weak random mode coupling, the required tap length of the equalizer is proportional to modal group delay of a single DMGD compensated pair, instead of the total modal group delay (MGD) of the entire link. By using small DMGD compensation step sizes, the required tap length (RTL) can be potentially reduced by 2 orders of magnitude
Contingency-Constrained Unit Commitment with Post-Contingency Corrective Recourse
We consider the problem of minimizing costs in the generation unit commitment
problem, a cornerstone in electric power system operations, while enforcing an
N-k-e reliability criterion. This reliability criterion is a generalization of
the well-known - criterion, and dictates that at least
fraction of the total system demand must be met following the failures of
or fewer system components. We refer to this problem as the
Contingency-Constrained Unit Commitment problem, or CCUC. We present a
mixed-integer programming formulation of the CCUC that accounts for both
transmission and generation element failures. We propose novel cutting plane
algorithms that avoid the need to explicitly consider an exponential number of
contingencies. Computational studies are performed on several IEEE test systems
and a simplified model of the Western US interconnection network, which
demonstrate the effectiveness of our proposed methods relative to current
state-of-the-art
- β¦