56 research outputs found

    Longitudinal white-matter abnormalities in sports-related concussion: A diffusion MRI study

    Get PDF
    Objective To study longitudinal recovery trajectories of white matter after sports-related concussion (SRC) by performing diffusion tensor imaging (DTI) on collegiate athletes who sustained SRC. Methods Collegiate athletes (n = 219, 82 concussed athletes, 68 contact-sport controls, and 69 non–contact-sport controls) were included from the Concussion Assessment, Research and Education Consortium. The participants completed clinical assessments and DTI at 4 time points: 24 to 48 hours after injury, asymptomatic state, 7 days after return-to-play, and 6 months after injury. Tract-based spatial statistics was used to investigate group differences in DTI metrics and to identify white-matter areas with persistent abnormalities. Generalized linear mixed models were used to study longitudinal changes and associations between outcome measures and DTI metrics. Cox proportional hazards model was used to study effects of white-matter abnormalities on recovery time. Results In the white matter of concussed athletes, DTI-derived mean diffusivity was significantly higher than in the controls at 24 to 48 hours after injury and beyond the point when the concussed athletes became asymptomatic. While the extent of affected white matter decreased over time, part of the corpus callosum had persistent group differences across all the time points. Furthermore, greater elevation of mean diffusivity at acute concussion was associated with worse clinical outcome measures (i.e., Brief Symptom Inventory scores and symptom severity scores) and prolonged recovery time. No significant differences in DTI metrics were observed between the contact-sport and non–contact-sport controls. Conclusions Changes in white matter were evident after SRC at 6 months after injury but were not observed in contact-sport exposure. Furthermore, the persistent white-matter abnormalities were associated with clinical outcomes and delayed recovery tim

    STOCHASTIC DYNAMIC ASPECTS OF NEURONAL-ACTIVITY

    No full text
    Blanchard P, COMBE P, NENCKA H, RODRIGUEZ R. STOCHASTIC DYNAMIC ASPECTS OF NEURONAL-ACTIVITY. JOURNAL OF MATHEMATICAL BIOLOGY. 1993;31(2):189-198.A stochastic model of neuronal activity is proposed. Some stochastic differential equations based on jump processes are used to investigate the behavior of the membrane potential at a time scale small with respect to the neuronal states time evolution. A model for learning, implying short memory effects, is described

    Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.

    No full text
    A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI

    The high resolution crystal structure of phosphatidylinositol 4 kinase II beta and the crystal structure of phosphatidylinositol 4 kinase II alpha containing a nucleoside analogue provide a structural basis for isoform specific inhibitor design

    No full text
    Phosphatidylinositol 4-phosphate (PI4P) is the most abundant monophosphoinositide in eukaryotic cells. Humans have four phosphatidylinositol 4-kinases (PI4Ks) that synthesize PI4P, among which are PI4K IIβ and PI4K IIα. In this study, two crystal structures are presented: the structure of human PI4K IIβ and the structure of PI4K IIα containing a nucleoside analogue. The former, a complex with ATP, is the first high-resolution (1.9 Å) structure of a PI4K. These structures reveal new details such as high conformational heterogeneity of the lateral hydrophobic pocket of the C-lobe and together provide a structural basis for isoform-specific inhibitor design.</jats:p
    corecore