9 research outputs found

    Attitudes regarding the national forensic DNA database: Survey data from the general public, prison inmates and prosecutors' offices in the Republic of Serbia

    Get PDF
    Worldwide, the establishment of national forensic DNA databases has transformed personal identification in the criminal justice system over the past two decades. It has also stimulated much debate centering on ethical issues, human rights, individual privacy, lack of safeguards and other standards. Therefore, a balance between effectiveness and intrusiveness of a national DNA repository is an imperative and needs to be achieved through a suitable legal framework. On its path to the European Union (EU), the Republic of Serbia is required to harmonize its national policies and legislation with the EU. Specifically, Chapter 24 of the EU acquis communautaire (Justice, Freedom and Security) stipulates the compulsory creation of a forensic DNA registry and adoption of corresponding legislation. This process is expected to occur in 2016. Thus, in light of launching the national DNA database, the goal of this work is to instigate a consultation with the Serbian public regarding their views on various aspects of the forensic DNA databank. Importantly, this study specifically assessed the opinions of distinct categories of citizens, including the general public, the prosecutors' offices staff, prisoners, prison guards, and students majoring in criminalistics. Our findings set a baseline for Serbian attitudes towards DNA databank custody, DNA sample and profile inclusion and retention criteria, ethical issues and concerns. Furthermore, results clearly demonstrate a permissive outlook of the respondents who are professional "beneficiaries" of genetic profiling and a restrictive position taken by the respondents whose genetic material has been acquired by the government. We believe that this opinion poll will be essential in discussions regarding a national DNA database, as well as in motivating further research on the reasons behind the observed views and subsequent development of educational strategies. All of these are, in turn, expected to aid the creation of suitable legislation and to increase societal confidence that the repository will be used in the legal system without interference with individual rights and freedoms

    The investigation of the presence of Clostridium botulinum spores in honey in Serbia

    Get PDF
    The presence of Clostridium botulinum spores in 59 honey samples originating from different regions of the Republic of Serbia was studied. In addition to microbiological methods, after enrichment, centrifugation and membrane filtration, molecular methods (PCR methods) were utilized. The number of spores in PCR positive samples was estimated by the most probable number (MPN) method. PCR confirmed C. botulinum spores in 5 (8.47%) honey samples. MPN of spores varied from 20/kg to 204/kg honey. PCR was more sensitive than cultural methods. Natural honey contamination with C. botulinum spores is low-level and not homogeneous, and therefore, PCR methods require multiple sub-sampling

    The pygidial gland secretion of Laemostenus punctatus (Coleoptera, Carabidae): a source of natural agents with antimicrobial, anti-adhesive, and anti-invasive activities

    Get PDF
    In the present study, we investigated in vitro the antimicrobial activity of the pygidial gland secretion of the guanophilic ground beetle Laemostenus (Pristonychus) punctatus (Dejean, 1828) and some of its chemicals against resistant and non-resistant bacteria and Candida species, the synergistic and additive potential of combinations of selected chemicals and antimicrobial drugs against resistant bacterial and fungal strains, anti-adhesive and anti-invasive potential of the secretion and formic acid alone and in selected combinations with antimicrobial drugs against methicillin-resistant Staphylococcus aureus (MRSA) toward spontaneously immortalized human keratinocyte cell line (HaCaT cells). In addition, we examined the antiproliferative activity of the secretion and formic acid in vitro. The tested secretion and the standards of formic and oleic acids possessed a significant level of antimicrobial potential against all tested strains (P < 0.05). The isolate from guano Pseudomonas monteilii showed the highest resistance to the secretion and formic acid, while MRSA achieved a significantly high level of susceptibility to all agents tested, particularly to the combinations of formic acid and antibiotics, but at the same time showed a certain level of resistance to the antibiotics tested individually. Candida albicans and C. tropicalis were found to be the most sensitive fungal strains to the secretion. Formic acid (MIC 0.0005 mg/mL) and gentamicin (MIC 0.0010 mg/mL) in the mixture achieved synergistic antibacterial activity against MRSA (FICI = 0.5, P < 0.05). The combination of formic acid, gentamicin and ampicillin accomplished an additive effect against this resistant bacterial strain (FICI = 1.5, P < 0.05). The secretion achieved a better inhibitory effect on the adhesion ability of MRSA toward HaCaT cells compared to formic acid alone, while formic acid showed better results regarding the invasion (P < 0.001). The combinations of gentamicin and ampicillin, as well as of formic acid and gentamicin and ampicillin achieved similar anti-adhesive and anti-invasive effects, with a slight advantage of formic acid and antibiotics in combination (P < 0.001). The secretion and formic acid were found to be non-toxic to HaCaT cells in vitro (IC50 ≥ 401 μg/mL)

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Mitochondrial Molecular Basis of Sevoflurane and Propofol Cardioprotection in Patients Undergoing Aortic Valve Replacement with Cardiopulmonary Bypass

    No full text
    Background/Aims: Study elucidates and compares the mitochondrial bioenergetic-related molecular basis of sevoflurane and propofol cardioprotection during aortic valve replacement surgery due to aortic valve stenosis. Methods: Twenty-two patients were prospectively randomized in two groups regarding the anesthetic regime: sevoflurane and propofol. Hemodynamic parameters, biomarkers of cardiac injury and brain natriuretic peptide (BNP) were measured preoperatively and postoperatively. In tissue samples, taken from the interventricular septum, key mitochondrial molecules were determined by Western blot, real time PCR, as well as confocal microscopy and immunohisto- and immunocyto-chemical analysis. Results: The protein levels of cytochrome c oxidase and ATP synthase were higher in sevoflurane than in propofol group. Nevertheless, cytochrome c protein content was higher in propofol than sevoflurane receiving patients. Propofol group also showed higher protein level of connexin 43 (Cx43) than sevoflurane group. Besides, immunogold analysis showed its mitochondrial localization. The mRNA level of mtDNA and uncoupling protein (UCP2) were higher in propofol than sevoflurane patients, as well. On the other hand, there were no significant differences between groups in hemodynamic assessment, intensive care unit length of stay, troponin I and BNP level. Conclusions: Our data indicate that sevoflurane and propofol lead to cardiac protection via different mitochondrially related molecular mechanisms. It appears that sevoflurane acts regulating cytochrome c oxidase and ATP synthase, while the effects of propofol occur through regulation of cytochrome c, Cx43, mtDNA transcription and UCP2. Copyright (C) 2012 S. Karger AG, BaselMinistry of Education and Science [173055, 173054

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60-80%(1), much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factorSP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    No full text
    Schizophrenia has a heritability of 60-80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies.11Nsciescopu

    Mapping genomic loci implicates genes and synaptic biology in schizophrenia

    Get PDF
    Schizophrenia has a heritability of 60–80%1, much of which is attributable to common risk alleles. Here, in a two-stage genome-wide association study of up to 76,755 individuals with schizophrenia and 243,649 control individuals, we report common variant associations at 287 distinct genomic loci. Associations were concentrated in genes that are expressed in excitatory and inhibitory neurons of the central nervous system, but not in other tissues or cell types. Using fine-mapping and functional genomic data, we identify 120 genes (106 protein-coding) that are likely to underpin associations at some of these loci, including 16 genes with credible causal non-synonymous or untranslated region variation. We also implicate fundamental processes related to neuronal function, including synaptic organization, differentiation and transmission. Fine-mapped candidates were enriched for genes associated with rare disruptive coding variants in people with schizophrenia, including the glutamate receptor subunit GRIN2A and transcription factor SP4, and were also enriched for genes implicated by such variants in neurodevelopmental disorders. We identify biological processes relevant to schizophrenia pathophysiology; show convergence of common and rare variant associations in schizophrenia and neurodevelopmental disorders; and provide a resource of prioritized genes and variants to advance mechanistic studies
    corecore