763 research outputs found
Submodular Maximization Meets Streaming: Matchings, Matroids, and More
We study the problem of finding a maximum matching in a graph given by an
input stream listing its edges in some arbitrary order, where the quantity to
be maximized is given by a monotone submodular function on subsets of edges.
This problem, which we call maximum submodular-function matching (MSM), is a
natural generalization of maximum weight matching (MWM), which is in turn a
generalization of maximum cardinality matching (MCM). We give two incomparable
algorithms for this problem with space usage falling in the semi-streaming
range---they store only edges, using working memory---that
achieve approximation ratios of in a single pass and in
passes respectively. The operations of these algorithms
mimic those of Zelke's and McGregor's respective algorithms for MWM; the
novelty lies in the analysis for the MSM setting. In fact we identify a general
framework for MWM algorithms that allows this kind of adaptation to the broader
setting of MSM.
In the sequel, we give generalizations of these results where the
maximization is over "independent sets" in a very general sense. This
generalization captures hypermatchings in hypergraphs as well as independence
in the intersection of multiple matroids.Comment: 18 page
Tight Kernel Bounds for Problems on Graphs with Small Degeneracy
In this paper we consider kernelization for problems on d-degenerate graphs,
i.e. graphs such that any subgraph contains a vertex of degree at most .
This graph class generalizes many classes of graphs for which effective
kernelization is known to exist, e.g. planar graphs, H-minor free graphs, and
H-topological-minor free graphs. We show that for several natural problems on
d-degenerate graphs the best known kernelization upper bounds are essentially
tight.Comment: Full version of ESA 201
Thresholded Covering Algorithms for Robust and Max-Min Optimization
The general problem of robust optimization is this: one of several possible
scenarios will appear tomorrow, but things are more expensive tomorrow than
they are today. What should you anticipatorily buy today, so that the
worst-case cost (summed over both days) is minimized? Feige et al. and
Khandekar et al. considered the k-robust model where the possible outcomes
tomorrow are given by all demand-subsets of size k, and gave algorithms for the
set cover problem, and the Steiner tree and facility location problems in this
model, respectively.
In this paper, we give the following simple and intuitive template for
k-robust problems: "having built some anticipatory solution, if there exists a
single demand whose augmentation cost is larger than some threshold, augment
the anticipatory solution to cover this demand as well, and repeat". In this
paper we show that this template gives us improved approximation algorithms for
k-robust Steiner tree and set cover, and the first approximation algorithms for
k-robust Steiner forest, minimum-cut and multicut. All our approximation ratios
(except for multicut) are almost best possible.
As a by-product of our techniques, we also get algorithms for max-min
problems of the form: "given a covering problem instance, which k of the
elements are costliest to cover?".Comment: 24 page
Streaming Algorithms for Submodular Function Maximization
We consider the problem of maximizing a nonnegative submodular set function
subject to a -matchoid
constraint in the single-pass streaming setting. Previous work in this context
has considered streaming algorithms for modular functions and monotone
submodular functions. The main result is for submodular functions that are {\em
non-monotone}. We describe deterministic and randomized algorithms that obtain
a -approximation using -space, where is
an upper bound on the cardinality of the desired set. The model assumes value
oracle access to and membership oracles for the matroids defining the
-matchoid constraint.Comment: 29 pages, 7 figures, extended abstract to appear in ICALP 201
Complexity of Strong Implementability
We consider the question of implementability of a social choice function in a
classical setting where the preferences of finitely many selfish individuals
with private information have to be aggregated towards a social choice. This is
one of the central questions in mechanism design. If the concept of weak
implementation is considered, the Revelation Principle states that one can
restrict attention to truthful implementations and direct revelation
mechanisms, which implies that implementability of a social choice function is
easy to check. For the concept of strong implementation, however, the
Revelation Principle becomes invalid, and the complexity of deciding whether a
given social choice function is strongly implementable has been open so far. In
this paper, we show by using methods from polyhedral theory that strong
implementability of a social choice function can be decided in polynomial space
and that each of the payments needed for strong implementation can always be
chosen to be of polynomial encoding length. Moreover, we show that strong
implementability of a social choice function involving only a single selfish
individual can be decided in polynomial time via linear programming
ForestHash: Semantic Hashing With Shallow Random Forests and Tiny Convolutional Networks
Hash codes are efficient data representations for coping with the ever
growing amounts of data. In this paper, we introduce a random forest semantic
hashing scheme that embeds tiny convolutional neural networks (CNN) into
shallow random forests, with near-optimal information-theoretic code
aggregation among trees. We start with a simple hashing scheme, where random
trees in a forest act as hashing functions by setting `1' for the visited tree
leaf, and `0' for the rest. We show that traditional random forests fail to
generate hashes that preserve the underlying similarity between the trees,
rendering the random forests approach to hashing challenging. To address this,
we propose to first randomly group arriving classes at each tree split node
into two groups, obtaining a significantly simplified two-class classification
problem, which can be handled using a light-weight CNN weak learner. Such
random class grouping scheme enables code uniqueness by enforcing each class to
share its code with different classes in different trees. A non-conventional
low-rank loss is further adopted for the CNN weak learners to encourage code
consistency by minimizing intra-class variations and maximizing inter-class
distance for the two random class groups. Finally, we introduce an
information-theoretic approach for aggregating codes of individual trees into a
single hash code, producing a near-optimal unique hash for each class. The
proposed approach significantly outperforms state-of-the-art hashing methods
for image retrieval tasks on large-scale public datasets, while performing at
the level of other state-of-the-art image classification techniques while
utilizing a more compact and efficient scalable representation. This work
proposes a principled and robust procedure to train and deploy in parallel an
ensemble of light-weight CNNs, instead of simply going deeper.Comment: Accepted to ECCV 201
Mixed state discrimination using optimal control
We present theory and experiment for the task of discriminating two
nonorthogonal states, given multiple copies. We implement several local
measurement schemes, on both pure states and states mixed by depolarizing
noise. We find that schemes which are optimal (or have optimal scaling) without
noise perform worse with noise than simply repeating the optimal single-copy
measurement. Applying optimal control theory, we derive the globally optimal
local measurement strategy, which outperforms all other local schemes, and
experimentally implement it for various levels of noise.Comment: Corrected ref 1 date; 4 pages & 4 figures + 2 pages & 3 figures
supplementary materia
Exact Ground States of Large Two-Dimensional Planar Ising Spin Glasses
Studying spin-glass physics through analyzing their ground-state properties
has a long history. Although there exist polynomial-time algorithms for the
two-dimensional planar case, where the problem of finding ground states is
transformed to a minimum-weight perfect matching problem, the reachable system
sizes have been limited both by the needed CPU time and by memory requirements.
In this work, we present an algorithm for the calculation of exact ground
states for two-dimensional Ising spin glasses with free boundary conditions in
at least one direction. The algorithmic foundations of the method date back to
the work of Kasteleyn from the 1960s for computing the complete partition
function of the Ising model. Using Kasteleyn cities, we calculate exact ground
states for huge two-dimensional planar Ising spin-glass lattices (up to
3000x3000 spins) within reasonable time. According to our knowledge, these are
the largest sizes currently available. Kasteleyn cities were recently also used
by Thomas and Middleton in the context of extended ground states on the torus.
Moreover, they show that the method can also be used for computing ground
states of planar graphs. Furthermore, we point out that the correctness of
heuristically computed ground states can easily be verified. Finally, we
evaluate the solution quality of heuristic variants of the Bieche et al.
approach.Comment: 11 pages, 5 figures; shortened introduction, extended results; to
appear in Physical Review E 7
Optimizing fire station locations for the Istanbul metropolitan municipality
Copyright @ 2013 INFORMSThe Istanbul Metropolitan Municipality (IMM) seeks to determine locations for additional fire stations to build in Istanbul; its objective is to make residences and historic sites reachable by emergency vehicles within five minutes of a fire station’s receipt of a service request. In this paper, we discuss our development of a mathematical model to aid IMM in determining these locations by using data retrieved from its fire incident records. We use a geographic information system to implement the model on Istanbul’s road network, and solve two location models—set-covering and maximal-covering—as what-if scenarios. We discuss 10 scenarios, including the situation that existed when we initiated the project and the scenario that IMM implemented. The scenario implemented increases the city’s fire station coverage from 58.6 percent to 85.9 percent, based on a five-minute response time, with an implementation plan that spans three years
On k-Column Sparse Packing Programs
We consider the class of packing integer programs (PIPs) that are column
sparse, i.e. there is a specified upper bound k on the number of constraints
that each variable appears in. We give an (ek+o(k))-approximation algorithm for
k-column sparse PIPs, improving on recent results of and
. We also show that the integrality gap of our linear programming
relaxation is at least 2k-1; it is known that k-column sparse PIPs are
-hard to approximate. We also extend our result (at the loss
of a small constant factor) to the more general case of maximizing a submodular
objective over k-column sparse packing constraints.Comment: 19 pages, v3: additional detail
- …