180 research outputs found
Biogeochemical Consequences of Rapid Microbial Turnover and Seasonal Succession in Soil
Soil microbial communities have the metabolic and genetic capability to adapt to changing environmental conditions on very short time scales. In this paper we combine biogeochemical and molecular approaches to reveal this potential, showing that microbial biomass can turn over on time scales of days to months in soil, resulting in a succession of microbial communities over the course of a year. This new understanding of the year-round turnover and succession of microbial communities allows us for the first time to propose a temporally explicit N cycle that provides mechanistic hypotheses to explain both the loss and retention of dissolved organic N (DON) and inorganic N (DIN) throughout the year in terrestrial ecosystems. In addition, our results strongly support the hypothesis that turnover of the microbial community is the largest source of DON and DIN for plant uptake during the plant growing season. While this model of microbial biogeochemistry is derived from observed dynamics in the alpine, we present several examples from other ecosystems to indicate that the general ideas of biogeochemical fluxes being linked to turnover and succession of microbial communities are applicable to a wide range of terrestrial ecosystems
Gene cassette transcription in a large integron-associated array
<p>Abstract</p> <p>Background</p> <p>The integron/gene cassette system is a diverse and effective adaptive resource for prokaryotes. Short cassette arrays, with less than 10 cassettes adjacent to an integron, provide this resource through the expression of cassette-associated genes by an integron-borne promoter. However, the advantage provided by large arrays containing hundreds of cassettes is less obvious. In this work, using the 116-cassette array of <it>Vibrio </it>sp. DAT722 as a model, we investigated the theory that the majority of genes contained within large cassette arrays are widely expressed by intra-array promoters in addition to the integron-borne promoter.</p> <p>Results</p> <p>We demonstrated that the majority of the cassette-associated genes in the subject array were expressed. We further showed that cassette expression was conditional and that the conditionality varied across the array. We finally showed that this expression was mediated by a diversity of cassette-borne promoters within the array capable of responding to environmental stressors.</p> <p>Conclusions</p> <p>Widespread expression within large gene cassette arrays could provide an adaptive advantage to the host in proportion to the size of the array. Our findings explained the existence and maintenance of large cassette arrays within many prokaryotes. Further, we suggested that repeated rearrangement of cassettes containing genes and/or promoters within large arrays could result in the assembly of operon-like groups of co-expressed cassettes within an array. These findings add to our understanding of the adaptive repertoire of the integron/gene cassette system in prokaryotes and consequently, the evolutionary impact of this system.</p
Marine integrons containing novel integrase genes, attachment sites, attI, and associated gene cassettes in polluted sediments from Suez and Tokyo Bays
In order to understand the structure and biological significance of integrons and associated gene cassettes in marine polluted sediments, metagenomic DNAs were extracted from sites at Suez and Tokyo Bays. PCR amplicons containing new integrase genes, intI, linked with novel gene cassettes, were recovered and had sizes from 1.8 to 2.5 kb. This approach uncovered, for the first time, the structure and diversity of both marine integron attachment site, attI, and the first gene cassette, the most efficiently expressed integron-associated gene cassette. The recovered 13 and 20 intI phylotypes, from Suez and Tokyo Bay samples, respectively, showed a highly divergence, suggesting a difference in integron composition between the sampling sites. Some intI phylotypes showed similarity with that from Geobacter metallireducens, belonging to Deltaproteobacteria, the dominant class in both sampling sites, as determined by 16S rRNA gene analysis. Thirty distinct families of putative attI site, as determined by the presence of an attI-like simple site, were recovered. A total of 146 and 68 gene cassettes represented Suez and Tokyo Bay unsaturated cassette pools, respectively. Gene cassettes, including a first cassette, from both sampling sites encoded two novel families of glyoxalase/bleomycin antibiotic-resistance protein. Gene cassettes from Suez Bay encoded proteins similar to haloacid dehalogenases, protein disulfide isomerases and death-on-curing and plasmid maintenance system killer proteins. First gene cassettes from Tokyo Bay encoded a xenobiotic-degrading protein, cardiolipin synthetase, esterase and WD40-like β propeller protein. Many of the first gene cassettes encoded proteins with no ascribable function but some of them were duplicated and possessed signal functional sites, suggesting efficient adaptive functions to their bacterial sources. Thus, each sampling site had a specific profile of integrons and cassette types consistent with the hypothesis that the environment shapes the genome
Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers
<p>Abstract</p> <p>Background</p> <p>The time it takes to isolate individuals from environmental samples and then extract DNA from each individual is one of the problems with generating molecular data from meiofauna such as eutardigrades and bdelloid rotifers. The lack of consistent morphological information and the extreme abundance of these classes makes morphological identification of rare, or even common cryptic taxa a large and unwieldy task. This limits the ability to perform large-scale surveys of the diversity of these organisms.</p> <p>Here we demonstrate a culture-independent molecular survey approach that enables the generation of large amounts of eutardigrade and bdelloid rotifer sequence data directly from soil. Our PCR primers, specific to the 18s small-subunit rRNA gene, were developed for both eutardigrades and bdelloid rotifers.</p> <p>Results</p> <p>The developed primers successfully amplified DNA of their target organism from various soil DNA extracts. This was confirmed by both the BLAST similarity searches and phylogenetic analyses. Tardigrades showed much better phylogenetic resolution than bdelloids. Both groups of organisms exhibited varying levels of endemism.</p> <p>Conclusion</p> <p>The development of clade-specific primers for characterizing eutardigrades and bdelloid rotifers from environmental samples should greatly increase our ability to characterize the composition of these taxa in environmental samples. Environmental sequencing as shown here differs from other molecular survey methods in that there is no need to pre-isolate the organisms of interest from soil in order to amplify their DNA. The DNA sequences obtained from methods that do not require culturing can be identified post-hoc and placed phylogenetically as additional closely related sequences are obtained from morphologically identified conspecifics. Our non-cultured environmental sequence based approach will be able to provide a rapid and large-scale screening of the presence, absence and diversity of Bdelloidea and Eutardigrada in a variety of soils.</p
Recommended from our members
Catchment-scale biogeography of riverine bacterioplankton
Lotic ecosystems such as rivers and streams are unique in that they represent a continuum of both space and time during the transition from headwaters to the river mouth. As microbes have very different controls over their ecology, distribution and dispersion compared with macrobiota, we wished to explore biogeographical patterns within a river catchment and uncover the major drivers structuring bacterioplankton communities. Water samples collected across the River Thames Basin, UK, covering the transition from headwater tributaries to the lower reaches of the main river channel were characterised using 16S rRNA gene pyrosequencing. This approach revealed an ecological succession in the bacterial community composition along the river continuum, moving from a community dominated by Bacteroidetes in the headwaters to Actinobacteria-dominated downstream. Location of the sampling point in the river network (measured as the cumulative water channel distance upstream) was found to be the most predictive spatial feature; inferring that ecological processes pertaining to temporal community succession are of prime importance in driving the assemblages of riverine bacterioplankton communities. A decrease in bacterial activity rates and an increase in the abundance of low nucleic acid bacteria relative to high nucleic acid bacteria were found to correspond with these downstream changes in community structure, suggesting corresponding functional changes. Our findings show that bacterial communities across the Thames basin exhibit an ecological succession along the river continuum, and that this is primarily driven by water residence time rather than the physiochemical status of the river
Structuring of Bacterioplankton Diversity in a Large Tropical Bay
Structuring of bacterioplanktonic populations and factors that determine the structuring of specific niche partitions have been demonstrated only for a limited number of colder water environments. In order to better understand the physical chemical and biological parameters that may influence bacterioplankton diversity and abundance, we examined their productivity, abundance and diversity in the second largest Brazilian tropical bay (Guanabara Bay, GB), as well as seawater physical chemical and biological parameters of GB. The inner bay location with higher nutrient input favored higher microbial (including vibrio) growth. Metagenomic analysis revealed a predominance of Gammaproteobacteria in this location, while GB locations with lower nutrient concentration favored Alphaproteobacteria and Flavobacteria. According to the subsystems (SEED) functional analysis, GB has a distinctive metabolic signature, comprising a higher number of sequences in the metabolism of phosphorus and aromatic compounds and a lower number of sequences in the photosynthesis subsystem. The apparent phosphorus limitation appears to influence the GB metagenomic signature of the three locations. Phosphorus is also one of the main factors determining changes in the abundance of planktonic vibrios, suggesting that nutrient limitation can be observed at community (metagenomic) and population levels (total prokaryote and vibrio counts)
Nucleo-cytoplasmic transport of proteins and RNA in plants
Merkle T. Nucleo-cytoplasmic transport of proteins and RNA in plants. Plant Cell Reports. 2011;30(2):153-176.Transport of macromolecules between the nucleus and the cytoplasm is an essential necessity in eukaryotic cells, since the nuclear envelope separates transcription from translation. In the past few years, an increasing number of components of the plant nuclear transport machinery have been characterised. This progress, although far from being completed, confirmed that the general characteristics of nuclear transport are conserved between plants and other organisms. However, plant-specific components were also identified. Interestingly, several mutants in genes encoding components of the plant nuclear transport machinery were investigated, revealing differential sensitivity of plant-specific pathways to impaired nuclear transport. These findings attracted attention towards plant-specific cargoes that are transported over the nuclear envelope, unravelling connections between nuclear transport and components of signalling and developmental pathways. The current state of research in plants is summarised in comparison to yeast and vertebrate systems, and special emphasis is given to plant nuclear transport mutants
The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China.
Bacteria play key roles in the ecology of both aquatic and terrestrial ecosystems; however, little is known about their diversity and biogeography, especially in the rare microbial biosphere of inland freshwater ecosystems. Here we investigated aspects of the community ecology and geographical distribution of abundant and rare bacterioplankton using high-throughput sequencing and examined the relative influence of local environmental variables and regional (spatial) factors on their geographical distribution patterns in 42 lakes and reservoirs across China. Our results showed that the geographical patterns of abundant and rare bacterial subcommunities were generally similar, and both of them showed a significant distance-decay relationship. This suggests that the rare bacterial biosphere is not a random assembly, as some authors have assumed, and that its distribution is most likely subject to the same ecological processes that control abundant taxa. However, we identified some differences between the abundant and rare groups as both groups of bacteria showed a significant positive relationship between sites occupancy and abundance, but the abundant bacteria exhibited a weaker distance-decay relationship than the rare bacteria. Our results implied that rare subcommunities were mostly governed by local environmental variables, whereas the abundant subcommunities were mainly affected by regional factors. In addition, both local and regional variables that were significantly related to the spatial variation of abundant bacterial community composition were different to those of rare ones, suggesting that abundant and rare bacteria may have discrepant ecological niches and may play different roles in natural ecosystems
Bacterial communities on classroom surfaces vary with human contact
BACKGROUND: Humans can spend the majority of their time indoors, but little is known about the interactions between the human and built-environment microbiomes or the forces that drive microbial community assembly in the built environment. We sampled 16S rRNA genes from four different surface types throughout a university classroom to determine whether bacterial assemblages on each surface were best predicted by routine human interactions or by proximity to other surfaces within the classroom. We then analyzed our data with publicly-available datasets representing potential source environments. RESULTS: Bacterial assemblages from the four surface types, as well as individual taxa, were indicative of different source pools related to the type of human contact each surface routinely encounters. Spatial proximity to other surfaces in the classroom did not predict community composition. CONCLUSIONS: Our results indicate that human-associated microbial communities can be transferred to indoor surfaces following contact, and that such transmission is possible even when contact is indirect, but that proximity to other surfaces in the classroom does not influence community composition
- …