2 research outputs found

    Physicochemical Characterization of Biopolymer Chitosan Extracted from Shrimp Shells

    No full text
    Chitosan is a deacetylated derivative of chitin, which is a naturally abundant mucopolysaccharide, supporting the matter of crustaceans, insects, and fungi. Because of its unique properties, such as non-toxicity, biodegradability, and biocompatibility, chitosan has a wide range of applications in various fields. The objective of the present work is to extract the polymer chitosan from Persian Gulf shrimp shells. In order to determine the physicochemical characteristics of the extracted chitosan, degree of deacetylation, molecular weight, water and fat binding capacities extraction rate, and apparent viscosity were measured using a variety of techniques including viscometry, weight measurement method and Fourier transform infrared spectroscopy (FTIR). The results of the study of the physicochemical properties, molecular weight (6.7×105 Da), degree of deacetylation (57%), ash content as well as yield (0.5%) of the prepared chitosan indicated that shrimp processing wastes (shrimp shells) are a good source of chitosan. The water binding capacity (521%) and fat binding capacity (327%) of the prepared chitosan are in good agreement with the other studies. The elemental analysis showed the C, H and N contents of 35.92%, 7.02%, and 8.66%, respectively. In this study, the antimicrobial activity of chitosan was evaluated against Staphylococcus aureus and Escherichia coli. The results indicated the high potential of chitosan as an antibacterial agent. Moreover, the results of the study indicated that shrimp shells are a rich source of chitin as 25.21% of the shell’s dry weight

    Nitrate Removal from Contaminated Waters by Using Anion Exchanger Phragmites Australis Nanoparticles

    No full text
    The efficiency of modified Phragmites australis nanoparticles for nitrate removal from aqueous solution in batch and continuous conditions was studied. The effect of different operating conditions such as pH, the amount of adsorbent, and initial nitrate concentration were surveyed. Our results showed that, pH 6 could provide better condition for nitrate removal. The increase in the nitrate concentration from 5 to 120mg L-1 reduced the efficiency from 90% to 67%. Kinetics and isotherm data revealed that the nitrate adsorption successfully can be described by pseudo-second order kinetic model (R2 =1) and Longmuir isotherm (R2 =0.99), respectively. At the continuous-flow mode, column were operated at 0.98 L hr-1 and 2.27 L hr-1 with initial nitrate concentration of 15, 50 and 120 mg L-1. At the above mentioned conditions, the adsorption capacities were 13.4, 28.5 and 36.5 mg g -1 at 0.98 L hr-1 and 25.2, 60.9 and 74.3 mg g-1 at 2.27 L hr-1,  respectively
    corecore